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In Section 5.3 we introduced the dot product in Rn and extended the basic geometric notions of
length and distance. A set {f1, f2, . . . , fm} of nonzero vectors in Rn was called an orthogonal set
if fi · f j = 0 for all i 6= j, and it was proved that every orthogonal set is independent. In particular,
it was observed that the expansion of a vector as a linear combination of orthogonal basis vectors
is easy to obtain because formulas exist for the coefficients. Hence the orthogonal bases are the
“nice” bases, and much of this chapter is devoted to extending results about bases to orthogonal
bases. This leads to some very powerful methods and theorems. Our first task is to show that every
subspace of Rn has an orthogonal basis.
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400 Orthogonality

8.1 Orthogonal Complements and Projections

If {v1, . . . , vm} is linearly independent in a general vector space, and if vm+1 is not in span{v1, . . . , vm},
then {v1, . . . , vm, vm+1} is independent (Lemma 6.4.1). Here is the analog for orthogonal sets in
Rn.

Lemma 8.1.1: Orthogonal Lemma

Let {f1, f2, . . . , fm} be an orthogonal set in Rn. Given x in Rn, write

fm+1 = x− x·f1
‖f1‖2 f1 − x·f2

‖f2‖2 f2 −·· ·− x·fm
‖fm‖2 fm

Then:

1. fm+1 · fk = 0 for k = 1, 2, . . . , m.

2. If x is not in span{f1, . . . , fm}, then fm+1 6= 0 and {f1, . . . , fm, fm+1} is an orthogonal
set.

Proof. For convenience, write ti = (x · fi)/‖fi‖2 for each i. Given 1 ≤ k ≤ m:

fm+1 · fk = (x− t1f1 −·· ·− tkfk −·· ·− tmfm) · fk

= x · fk − t1(f1 · fk)−·· ·− tk(fk · fk)−·· ·− tm(fm · fk)

= x · fk − tk‖fk‖2

= 0

This proves (1), and (2) follows because fm+1 6= 0 if x is not in span{f1, . . . , fm}.

The orthogonal lemma has three important consequences for Rn. The first is an extension for
orthogonal sets of the fundamental fact that any independent set is part of a basis (Theorem 6.4.1).

Theorem 8.1.1
Let U be a subspace of Rn.

1. Every orthogonal subset {f1, . . . , fm} in U is a subset of an orthogonal basis of U .

2. U has an orthogonal basis.

Proof.

1. If span{f1, . . . , fm} = U , it is already a basis. Otherwise, there exists x in U outside
span{f1, . . . , fm}. If fm+1 is as given in the orthogonal lemma, then fm+1 is in U and
{f1, . . . , fm, fm+1} is orthogonal. If span{f1, . . . , fm, fm+1} = U , we are done. Otherwise,
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the process continues to create larger and larger orthogonal subsets of U . They are all in-
dependent by Theorem 5.3.5, so we have a basis when we reach a subset containing dim U
vectors.

2. If U = {0}, the empty basis is orthogonal. Otherwise, if f 6= 0 is in U , then {f} is orthogonal,
so (2) follows from (1).

We can improve upon (2) of Theorem 8.1.1. In fact, the second consequence of the orthogonal
lemma is a procedure by which any basis {x1, . . . , xm} of a subspace U of Rn can be systematically
modified to yield an orthogonal basis {f1, . . . , fm} of U . The fi are constructed one at a time from
the xi.

To start the process, take f1 = x1. Then x2 is not in span{f1} because {x1, x2} is independent,
so take

f2 = x2 − x2·f1
‖f1‖2 f1

Thus {f1, f2} is orthogonal by Lemma 8.1.1. Moreover, span{f1, f2}= span{x1, x2} (verify), so x3
is not in span{f1, f2}. Hence {f1, f2, f3} is orthogonal where

f3 = x3 − x3·f1
‖f1‖2 f1 − x3·f2

‖f2‖2 f2

Again, span{f1, f2, f3}= span{x1, x2, x3}, so x4 is not in span{f1, f2, f3} and the process continues.
At the mth iteration we construct an orthogonal set {f1, . . . , fm} such that

span{f1, f2, . . . , fm}= span{x1, x2, . . . , xm}=U

Hence {f1, f2, . . . , fm} is the desired orthogonal basis of U . The procedure can be summarized as
follows.
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0

x3

f2

f1
span{f1, f2}

Gram-Schmidt

0

f3

f2

f1
span{f1, f2}

Theorem 8.1.2: Gram-Schmidt Orthogonalization Al-
gorithm1

If {x1, x2, . . . , xm} is any basis of a subspace U of Rn,
construct f1, f2, . . . , fm in U successively as follows:

f1 = x1

f2 = x2 − x2·f1
‖f1‖2 f1

f3 = x3 − x3·f1
‖f1‖2 f1 − x3·f2

‖f2‖2 f2
...
fk = xk − xk·f1

‖f1‖2 f1 − xk·f2
‖f2‖2 f2 −·· ·− xk·fk−1

‖fk−1‖2 fk−1

for each k = 2, 3, . . . , m. Then

1. {f1, f2, . . . , fm} is an orthogonal basis of U .

2. span{f1, f2, . . . , fk}= span{x1, x2, . . . , xk} for each
k = 1, 2, . . . , m.

The process (for k = 3) is depicted in the diagrams. Of course, the algorithm converts any basis
of Rn itself into an orthogonal basis.

Example 8.1.1

Find an orthogonal basis of the row space of A =

 1 1 −1 −1
3 2 0 1
1 0 1 0

.

Solution. Let x1, x2, x3 denote the rows of A and observe that {x1, x2, x3} is linearly
independent. Take f1 = x1. The algorithm gives

f2 = x2 − x2·f1
‖f1‖2 f1 = (3, 2, 0, 1)− 4

4(1, 1, −1, −1) = (2, 1, 1, 2)

f3 = x3 − x3·f1
‖f1‖2 f1 − x3·f2

‖f2‖2 f2 = x3 − 0
4f1 − 3

10f2 =
1

10(4, −3, 7, −6)

Hence {(1, 1, −1, −1), (2, 1, 1, 2), 1
10(4, −3, 7, −6)} is the orthogonal basis provided by

the algorithm. In hand calculations it may be convenient to eliminate fractions (see the
Remark below), so {(1, 1, −1, −1), (2, 1, 1, 2), (4, −3, 7, −6)} is also an orthogonal
basis for row A.

1Erhardt Schmidt (1876–1959) was a German mathematician who studied under the great David Hilbert and later
developed the theory of Hilbert spaces. He first described the present algorithm in 1907. Jörgen Pederson Gram
(1850–1916) was a Danish actuary.
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Remark
Observe that the vector x·fi

‖fi‖2 fi is unchanged if a nonzero scalar multiple of fi is used in place of fi.
Hence, if a newly constructed fi is multiplied by a nonzero scalar at some stage of the Gram-Schmidt
algorithm, the subsequent fs will be unchanged. This is useful in actual calculations.

Projections

x

p

x−p
0

U

Suppose a point x and a plane U through the origin in R3 are given,
and we want to find the point p in the plane that is closest to x.
Our geometric intuition assures us that such a point p exists. In
fact (see the diagram), p must be chosen in such a way that x−p is
perpendicular to the plane.

Now we make two observations: first, the plane U is a subspace
of R3 (because U contains the origin); and second, that the condition that x−p is perpendicular
to the plane U means that x−p is orthogonal to every vector in U . In these terms the whole
discussion makes sense in Rn. Furthermore, the orthogonal lemma provides exactly what is needed
to find p in this more general setting.

Definition 8.1 Orthogonal Complement of a Subspace of Rn

If U is a subspace of Rn, define the orthogonal complement U⊥ of U (pronounced
“U-perp”) by

U⊥ = {x in Rn | x ·y = 0 for all y in U}

The following lemma collects some useful properties of the orthogonal complement; the proof of
(1) and (2) is left as Exercise 8.1.6.

Lemma 8.1.2
Let U be a subspace of Rn.

1. U⊥ is a subspace of Rn.

2. {0}⊥ = Rn and (Rn)⊥ = {0}.

3. If U = span{x1, x2, . . . , xk}, then U⊥ = {x in Rn | x ·xi = 0 for i = 1, 2, . . . , k}.

Proof.
3. Let U = span{x1, x2, . . . , xk}; we must show that U⊥ = {x | x ·xi = 0 for each i}. If x is in U⊥

then x ·xi = 0 for all i because each xi is in U . Conversely, suppose that x ·xi = 0 for all i; we
must show that x is in U⊥, that is, x ·y= 0 for each y in U . Write y= r1x1+r2x2+ · · ·+rkxk,
where each ri is in R. Then, using Theorem 5.3.1,

x ·y = r1(x ·x1)+ r2(x ·x2)+ · · ·+ rk(x ·xk) = r10+ r20+ · · ·+ rk0 = 0

as required.
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Example 8.1.2

Find U⊥ if U = span{(1, −1, 2, 0), (1, 0, −2, 3)} in R4.

Solution. By Lemma 8.1.2, x = (x, y, z, w) is in U⊥ if and only if it is orthogonal to both
(1, −1, 2, 0) and (1, 0, −2, 3); that is,

x − y + 2z = 0
x − 2z + 3w = 0

Gaussian elimination gives U⊥ = span{(2, 4, 1, 0), (3, 3, 0, −1)}.

x

0

p
d

U

Now consider vectors x and d 6= 0 in R3. The projection p =
projd x of x on d was defined in Section 4.2 as in the diagram.

The following formula for p was derived in Theorem 4.2.4

p = projd x =
(

x·d
‖d‖2

)
d

where it is shown that x−p is orthogonal to d. Now observe that
the line U = Rd = {td | t ∈ R} is a subspace of R3, that {d} is an

orthogonal basis of U , and that p ∈U and x−p ∈U⊥ (by Theorem 4.2.4).
In this form, this makes sense for any vector x in Rn and any subspace U of Rn, so we generalize

it as follows. If {f1, f2, . . . , fm} is an orthogonal basis of U , we define the projection p of x on U
by the formula

p =
(

x·f1
‖f1‖2

)
f1 +

(
x·f2
‖f2‖2

)
f2 + · · ·+

(
x·fm
‖fm‖2

)
fm (8.1)

Then p ∈U and (by the orthogonal lemma) x−p ∈U⊥, so it looks like we have a generalization of
Theorem 4.2.4.

However there is a potential problem: the formula (8.1) for p must be shown to be independent
of the choice of the orthogonal basis {f1, f2, . . . , fm}. To verify this, suppose that {f′1, f′2, . . . , f′m}
is another orthogonal basis of U , and write

p′ =
(

x·f′1
‖f′1‖2

)
f′1 +

(
x·f′2
‖f′2‖2

)
f′2 + · · ·+

(
x·f′m
‖f′m‖2

)
f′m

As before, p′ ∈ U and x−p′ ∈ U⊥, and we must show that p′ = p. To see this, write the vector
p−p′ as follows:

p−p′ = (x−p′)− (x−p)

This vector is in U (because p and p′ are in U) and it is in U⊥ (because x−p′ and x−p are in
U⊥), and so it must be zero (it is orthogonal to itself!). This means p′ = p as desired.

Hence, the vector p in equation (8.1) depends only on x and the subspace U , and not on the
choice of orthogonal basis {f1, . . . , fm} of U used to compute it. Thus, we are entitled to make the
following definition:
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Definition 8.2 Projection onto a Subspace of Rn

Let U be a subspace of Rn with orthogonal basis {f1, f2, . . . , fm}. If x is in Rn, the vector

projU x = x·f1
‖f1‖2 f1 +

x·f2
‖f2‖2 f2 + · · ·+ x·fm

‖fm‖2 fm

is called the orthogonal projection of x on U . For the zero subspace U = {0}, we define

proj{0} x = 0

The preceding discussion proves (1) of the following theorem.

Theorem 8.1.3: Projection Theorem

If U is a subspace of Rn and x is in Rn, write p = projU x. Then:

1. p is in U and x−p is in U⊥.

2. p is the vector in U closest to x in the sense that

‖x−p‖< ‖x−y‖ for all y ∈U , y 6= p

Proof.

1. This is proved in the preceding discussion (it is clear if U = {0}).

2. Write x−y = (x−p)+ (p−y). Then p−y is in U and so is orthogonal to x−p by (1).
Hence, the Pythagorean theorem gives

‖x−y‖2 = ‖x−p‖2 +‖p−y‖2 > ‖x−p‖2

because p−y 6= 0. This gives (2).

Example 8.1.3

Let U = span{x1, x2} in R4 where x1 = (1, 1, 0, 1) and x2 = (0, 1, 1, 2). If
x = (3, −1, 0, 2), find the vector in U closest to x and express x as the sum of a vector in
U and a vector orthogonal to U .

Solution. {x1, x2} is independent but not orthogonal. The Gram-Schmidt process gives an
orthogonal basis {f1, f2} of U where f1 = x1 = (1, 1, 0, 1) and

f2 = x2 − x2·f1
‖f1‖2 f1 = x2 − 3

3f1 = (−1, 0, 1, 1)

Hence, we can compute the projection using {f1, f2}:

p = projU x = x·f1
‖f1‖2 f1 +

x·f2
‖f2‖2 f2 =

4
3f1 +

−1
3 f2 =

1
3

[
5 4 −1 3

]
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Thus, p is the vector in U closest to x, and x−p = 1
3(4, −7, 1, 3) is orthogonal to every

vector in U . (This can be verified by checking that it is orthogonal to the generators x1 and
x2 of U .) The required decomposition of x is thus

x = p+(x−p) = 1
3(5, 4, −1, 3)+ 1

3(4, −7, 1, 3)

Example 8.1.4

Find the point in the plane with equation 2x+ y− z = 0 that is closest to the point
(2, −1, −3).

Solution. We write R3 as rows. The plane is the subspace U whose points (x, y, z) satisfy
z = 2x+ y. Hence

U = {(s, t, 2s+ t) | s, t in R}= span{(0, 1, 1), (1, 0, 2)}

The Gram-Schmidt process produces an orthogonal basis {f1, f2} of U where f1 = (0, 1, 1)
and f2 = (1, −1, 1). Hence, the vector in U closest to x = (2, −1, −3) is

projU x = x·f1
‖f1‖2 f1 +

x·f2
‖f2‖2 f2 =−2f1 +0f2 = (0, −2, −2)

Thus, the point in U closest to (2, −1, −3) is (0, −2, −2).

The next theorem shows that projection on a subspace of Rn is actually a linear operator
Rn → Rn.

Theorem 8.1.4
Let U be a fixed subspace of Rn. If we define T : Rn → Rn by

T (x) = projU x for all x in Rn

1. T is a linear operator.

2. im T =U and ker T =U⊥.

3. dim U + dim U⊥ = n.

Proof. If U = {0}, then U⊥ = Rn, and so T (x) = proj{0} x = 0 for all x. Thus T = 0 is the zero
(linear) operator, so (1), (2), and (3) hold. Hence assume that U 6= {0}.

1. If {f1, f2, . . . , fm} is an orthonormal basis of U , then

T (x) = (x · f1)f1 +(x · f2)f2 + · · ·+(x · fm)fm for all x in Rn (8.2)

by the definition of the projection. Thus T is linear because

(x+y) · fi = x · fi +y · fi and (rx) · fi = r(x · fi) for each i
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2. We have im T ⊆U by (8.2) because each fi is in U . But if x is in U , then x = T (x) by (8.2)
and the expansion theorem applied to the space U . This shows that U ⊆ im T , so im T =U .
Now suppose that x is in U⊥. Then x · fi = 0 for each i (again because each fi is in U) so x is
in ker T by (8.2). Hence U⊥ ⊆ ker T . On the other hand, Theorem 8.1.3 shows that x−T (x)
is in U⊥ for all x in Rn, and it follows that ker T ⊆U⊥. Hence ker T =U⊥, proving (2).

3. This follows from (1), (2), and the dimension theorem (Theorem 7.2.4).

Exercises for 8.1

Exercise 8.1.1 In each case, use the Gram-
Schmidt algorithm to convert the given basis B of
V into an orthogonal basis.

a. V = R2, B = {(1, −1), (2, 1)}

b. V = R2, B = {(2, 1), (1, 2)}

c. V = R3, B = {(1, −1, 1), (1, 0, 1), (1, 1, 2)}

d. V = R3, B = {(0, 1, 1), (1, 1, 1), (1, −2, 2)}

b. {(2, 1), 3
5(−1, 2)}

d. {(0, 1, 1), (1, 0, 0), (0, −2, 2)}

Exercise 8.1.2 In each case, write x as the sum of
a vector in U and a vector in U⊥.

a. x = (1, 5, 7), U = span{(1, −2, 3), (−1, 1, 1)}

b. x = (2, 1, 6), U = span{(3, −1, 2), (2, 0, −3)}

c. x = (3, 1, 5, 9),
U = span{(1, 0, 1, 1), (0, 1, −1, 1), (−2, 0, 1, 1)}

d. x = (2, 0, 1, 6),
U = span{(1, 1, 1, 1), (1, 1, −1, −1), (1, −1, 1, −1)}

e. x = (a, b, c, d),
U = span{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)}

f. x = (a, b, c, d),
U = span{(1, −1, 2, 0), (−1, 1, 1, 1)}

b. x = 1
182(271, −221, 1030)+ 1

182(93, 403, 62)

d. x = 1
4(1, 7, 11, 17)+ 1

4(7, −7, −7, 7)

f. x = 1
12(5a−5b+c−3d, −5a+5b−c+3d, a−

b+11c+3d, −3a+3b+3c+3d)+ 1
12(7a+5b−

c+3d, 5a+7b+ c−3d, −a+b+ c−3d, 3a−
3b−3c+9d)

Exercise 8.1.3 Let x = (1, −2, 1, 6) in R4, and
let U = span{(2, 1, 3, −4), (1, 2, 0, 1)}.

a. Compute projU x.

b. Show that {(1, 0, 2, −3), (4, 7, 1, 2)} is an-
other orthogonal basis of U .

c. Use the basis in part (b) to compute projU x.

a. 1
10(−9, 3, −21, 33) = 3

10(−3, 1, −7, 11)

c. 1
70(−63, 21, −147, 231) = 3

10(−3, 1, −7, 11)

Exercise 8.1.4 In each case, use the Gram-
Schmidt algorithm to find an orthogonal basis of the
subspace U , and find the vector in U closest to x.

a. U = span{(1, 1, 1), (0, 1, 1)}, x = (−1, 2, 1)

b. U = span{(1, −1, 0), (−1, 0, 1)}, x= (2, 1, 0)

c. U = span{(1, 0, 1, 0), (1, 1, 1, 0), (1, 1, 0, 0)},
x = (2, 0, −1, 3)
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d. U = span{(1, −1, 0, 1), (1, 1, 0, 0), (1, 1, 0, 1)},
x = (2, 0, 3, 1)

b. {(1, −1, 0), 1
2(−1, −1, 2)}; projU x =

(1, 0, −1)

d. {(1, −1, 0, 1), (1, 1, 0, 0), 1
3(−1, 1, 0, 2)};

projU x = (2, 0, 0, 1)

Exercise 8.1.5 Let U = span{v1, v2, . . . , vk}, vi

in Rn, and let A be the k× n matrix with the vi as
rows.

a. Show that U⊥ = {x | x in Rn, AxT = 0}.

b. Use part (a) to find U⊥ if
U = span{(1, −1, 2, 1), (1, 0, −1, 1)}.

b. U⊥ = span{(1, 3, 1, 0), (−1, 0, 0, 1)}

Exercise 8.1.6

a. Prove part 1 of Lemma 8.1.2.

b. Prove part 2 of Lemma 8.1.2.

Exercise 8.1.7 Let U be a subspace of Rn. If x in
Rn can be written in any way at all as x = p+q
with p in U and q in U⊥, show that necessarily
p = projU x.

Exercise 8.1.8 Let U be a subspace of Rn and let
x be a vector in Rn. Using Exercise 8.1.7, or other-
wise, show that x is in U if and only if x = projU x.

Write p = projU x. Then p is in U by definition. If
x is U , then x−p is in U . But x−p is also in U⊥

by Theorem 8.1.3, so x−p is in U ∩U⊥ = {0}. Thus
x = p.

Exercise 8.1.9 Let U be a subspace of Rn.

a. Show that U⊥ = Rn if and only if U = {0}.

b. Show that U⊥ = {0} if and only if U = Rn.

Exercise 8.1.10 If U is a subspace of Rn, show that
projU x = x for all x in U .
Let {f1, f2, . . . , fm} be an orthonormal basis of
U . If x is in U the expansion theorem gives x =
(x · f1)f1 +(x · f2)f2 + · · ·+(x · fm)fm = projU x.

Exercise 8.1.11 If U is a subspace of Rn, show
that x = projU x+ projU⊥ x for all x in Rn.

Exercise 8.1.12 If {f1, . . . , fn} is an orthogonal
basis of Rn and U = span{f1, . . . , fm}, show that
U⊥ = span{fm+1, . . . , fn}.

Exercise 8.1.13 If U is a subspace of Rn, show
that U⊥⊥ =U . [Hint: Show that U ⊆U⊥⊥, then use
Theorem 8.1.4 (3) twice.]

Exercise 8.1.14 If U is a subspace of Rn, show how
to find an n×n matrix A such that U = {x | Ax = 0}.
[Hint: Exercise 8.1.13.]
Let {y1, y2, . . . , ym} be a basis of U⊥, and let A be
the n×n matrix with rows yT

1 , yT
2 , . . . , yT

m, 0, . . . , 0.
Then Ax = 0 if and only if yi ·x = 0 for each i =
1, 2, . . . , m; if and only if x is in U⊥⊥ =U .

Exercise 8.1.15 Write Rn as rows. If A is an n×n
matrix, write its null space as null A = {x in Rn |
AxT = 0}. Show that:

null A = ( row A)⊥;a) null AT = (col A)⊥.b)

Exercise 8.1.16 If U and W are subspaces, show
that (U +W )⊥ =U⊥∩W⊥. [See Exercise 5.1.22.]

Exercise 8.1.17 Think of Rn as consisting of rows.

a. Let E be an n×n matrix, and let
U = {xE | x in Rn}. Show that the following
are equivalent.

i. E2 = E = ET (E is a projection ma-
trix).

ii. (x−xE) · (yE) = 0 for all x and y in Rn.

iii. projU x = xE for all x in Rn. [Hint: For
(ii) implies (iii): Write x=xE+(x−xE)
and use the uniqueness argument pre-
ceding the definition of projU x. For (iii)
implies (ii): x−xE is in U⊥ for all x in
Rn.]

b. If E is a projection matrix, show that I −E is
also a projection matrix.
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c. If EF = 0 = FE and E and F are projection
matrices, show that E +F is also a projection
matrix.

d. If A is m×n and AAT is invertible, show that
E = AT (AAT )−1A is a projection matrix.

d. ET = AT [(AAT )−1]T (AT )T = AT [(AAT )T ]−1A =
AT [AAT ]−1A=E E2 =AT (AAT )−1AAT (AAT )−1A=
AT (AAT )−1A = E

Exercise 8.1.18 Let A be an n×n matrix of rank
r. Show that there is an invertible n× n matrix U
such that UA is a row-echelon matrix with the prop-
erty that the first r rows are orthogonal. [Hint: Let
R be the row-echelon form of A, and use the Gram-
Schmidt process on the nonzero rows of R from the
bottom up. Use Lemma 2.4.1.]

Exercise 8.1.19 Let A be an (n− 1)× n matrix
with rows x1, x2, . . . , xn−1 and let Ai denote the

(n−1)× (n−1) matrix obtained from A by deleting
column i. Define the vector y in Rn by

y =
[

det A1 − det A2 det A3 · · · (−1)n+1 det An
]

Show that:

a. xi · y = 0 for all i = 1, 2, . . . , n − 1. [Hint:

Write Bi =

[
xi

A

]
and show that det Bi = 0.]

b. y 6= 0 if and only if {x1, x2, . . . , xn−1} is lin-
early independent. [Hint: If some det Ai 6= 0,
the rows of Ai are linearly independent. Con-
versely, if the xi are independent, consider
A = UR where R is in reduced row-echelon
form.]

c. If {x1, x2, . . . , xn−1} is linearly independent,
use Theorem 8.1.3(3) to show that all solu-
tions to the system of n−1 homogeneous equa-
tions

AxT = 0

are given by ty, t a parameter.
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8.2 Orthogonal Diagonalization

Recall (Theorem 5.5.3) that an n×n matrix A is diagonalizable if and only if it has n linearly inde-
pendent eigenvectors. Moreover, the matrix P with these eigenvectors as columns is a diagonalizing
matrix for A, that is

P−1AP is diagonal.
As we have seen, the really nice bases of Rn are the orthogonal ones, so a natural question is:
which n×n matrices have an orthogonal basis of eigenvectors? These turn out to be precisely the
symmetric matrices, and this is the main result of this section.

Before proceeding, recall that an orthogonal set of vectors is called orthonormal if ‖v‖= 1 for
each vector v in the set, and that any orthogonal set {v1, v2, . . . , vk} can be “normalized”, that is
converted into an orthonormal set { 1

‖v1‖v1, 1
‖v2‖v2, . . . , 1

‖vk‖vk}. In particular, if a matrix A has n
orthogonal eigenvectors, they can (by normalizing) be taken to be orthonormal. The corresponding
diagonalizing matrix P has orthonormal columns, and such matrices are very easy to invert.

Theorem 8.2.1
The following conditions are equivalent for an n×n matrix P.

1. P is invertible and P−1 = PT .

2. The rows of P are orthonormal.

3. The columns of P are orthonormal.

Proof. First recall that condition (1) is equivalent to PPT = I by Corollary 2.4.1 of Theorem 2.4.5.
Let x1, x2, . . . , xn denote the rows of P. Then xT

j is the jth column of PT , so the (i, j)-entry of
PPT is xi ·x j. Thus PPT = I means that xi ·x j = 0 if i 6= j and xi ·x j = 1 if i = j. Hence condition
(1) is equivalent to (2). The proof of the equivalence of (1) and (3) is similar.

Definition 8.3 Orthogonal Matrices

An n×n matrix P is called an orthogonal matrix2if it satisfies one (and hence all) of the
conditions in Theorem 8.2.1.

Example 8.2.1

The rotation matrix
[

cosθ −sinθ

sinθ cosθ

]
is orthogonal for any angle θ .

These orthogonal matrices have the virtue that they are easy to invert—simply take the trans-
pose. But they have many other important properties as well. If T : Rn → Rn is a linear operator,

2In view of (2) and (3) of Theorem 8.2.1, orthonormal matrix might be a better name. But orthogonal matrix is
standard.
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we will prove (Theorem ??) that T is distance preserving if and only if its matrix is orthogonal. In
particular, the matrices of rotations and reflections about the origin in R2 and R3 are all orthogonal
(see Example 8.2.1).

It is not enough that the rows of a matrix A are merely orthogonal for A to be an orthogonal
matrix. Here is an example.

Example 8.2.2

The matrix

 2 1 1
−1 1 1

0 −1 1

 has orthogonal rows but the columns are not orthogonal.

However, if the rows are normalized, the resulting matrix


2√
6

1√
6

1√
6

−1√
3

1√
3

1√
3

0 −1√
2

1√
2

 is orthogonal (so

the columns are now orthonormal as the reader can verify).

Example 8.2.3

If P and Q are orthogonal matrices, then PQ is also orthogonal, as is P−1 = PT .

Solution. P and Q are invertible, so PQ is also invertible and

(PQ)−1 = Q−1P−1 = QT PT = (PQ)T

Hence PQ is orthogonal. Similarly,

(P−1)−1 = P = (PT )T = (P−1)T

shows that P−1 is orthogonal.

Definition 8.4 Orthogonally Diagonalizable Matrices

An n×n matrix A is said to be orthogonally diagonalizable when an orthogonal matrix
P can be found such that P−1AP = PT AP is diagonal.

This condition turns out to characterize the symmetric matrices.

Theorem 8.2.2: Principal Axes Theorem

The following conditions are equivalent for an n×n matrix A.

1. A has an orthonormal set of n eigenvectors.

2. A is orthogonally diagonalizable.
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3. A is symmetric.

Proof. (1) ⇔ (2). Given (1), let x1, x2, . . . , xn be orthonormal eigenvectors of A. Then P =[
x1 x2 . . . xn

]
is orthogonal, and P−1AP is diagonal by Theorem 3.3.4. This proves (2). Con-

versely, given (2) let P−1AP be diagonal where P is orthogonal. If x1, x2, . . . , xn are the columns
of P then {x1, x2, . . . , xn} is an orthonormal basis of Rn that consists of eigenvectors of A by
Theorem 3.3.4. This proves (1).

(2) ⇒ (3). If PT AP = D is diagonal, where P−1 = PT , then A = PDPT . But DT = D, so this gives
AT = PT T DT PT = PDPT = A.

(3) ⇒ (2). If A is an n×n symmetric matrix, we proceed by induction on n. If n = 1, A is already
diagonal. If n> 1, assume that (3) ⇒ (2) for (n−1)×(n−1) symmetric matrices. By Theorem 5.5.7
let λ1 be a (real) eigenvalue of A, and let Ax1 = λ1x1, where ‖x1‖ = 1. Use the Gram-Schmidt
algorithm to find an orthonormal basis {x1, x2, . . . , xn} for Rn. Let P1 =

[
x1 x2 . . . xn

]
, so

P1 is an orthogonal matrix and PT
1 AP1 =

[
λ1 B
0 A1

]
in block form by Lemma 5.5.2. But PT

1 AP1 is

symmetric (A is), so it follows that B = 0 and A1 is symmetric. Then, by induction, there exists an

(n−1)×(n−1) orthogonal matrix Q such that QT A1Q=D1 is diagonal. Observe that P2 =

[
1 0
0 Q

]
is orthogonal, and compute:

(P1P2)
T A(P1P2) = PT

2 (PT
1 AP1)P2

=

[
1 0
0 QT

][
λ1 0
0 A1

][
1 0
0 Q

]
=

[
λ1 0
0 D1

]
is diagonal. Because P1P2 is orthogonal, this proves (2).

A set of orthonormal eigenvectors of a symmetric matrix A is called a set of principal axes for
A. The name comes from geometry, and this is discussed in Section ??. Because the eigenvalues of
a (real) symmetric matrix are real, Theorem 8.2.2 is also called the real spectral theorem, and
the set of distinct eigenvalues is called the spectrum of the matrix. In full generality, the spectral
theorem is a similar result for matrices with complex entries (Theorem ??).

Example 8.2.4

Find an orthogonal matrix P such that P−1AP is diagonal, where A =

 1 0 −1
0 1 2

−1 2 5

.

Solution. The characteristic polynomial of A is (adding twice row 1 to row 2):

cA(x) = det

 x−1 0 1
0 x−1 −2
1 −2 x−5

= x(x−1)(x−6)
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Thus the eigenvalues are λ = 0, 1, and 6, and corresponding eigenvectors are

x1 =

 1
−2

1

 x2 =

 2
1
0

 x3 =

 −1
2
5


respectively. Moreover, by what appears to be remarkably good luck, these eigenvectors are
orthogonal. We have ‖x1‖2 = 6, ‖x2‖2 = 5, and ‖x3‖2 = 30, so

P =
[

1√
6
x1

1√
5
x2

1√
30

x3

]
= 1√

30


√

5 2
√

6 −1
−2

√
5

√
6 2√

5 0 5


is an orthogonal matrix. Thus P−1 = PT and

PT AP =

 0 0 0
0 1 0
0 0 6


by the diagonalization algorithm.

Actually, the fact that the eigenvectors in Example 8.2.4 are orthogonal is no coincidence.
Theorem 5.5.4 guarantees they are linearly independent (they correspond to distinct eigenvalues);
the fact that the matrix is symmetric implies that they are orthogonal. To prove this we need the
following useful fact about symmetric matrices.

Theorem 8.2.3
If A is an n×n symmetric matrix, then

(Ax) ·y = x · (Ay)

for all columns x and y in Rn.3

Proof. Recall that x ·y = xT y for all columns x and y. Because AT = A, we get

(Ax) ·y = (Ax)T y = xT AT y = xT Ay = x · (Ay)

Theorem 8.2.4
If A is a symmetric matrix, then eigenvectors of A corresponding to distinct eigenvalues are
orthogonal.

3The converse also holds (Exercise 8.2.15).
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Proof. Let Ax = λx and Ay = µy, where λ 6= µ . Using Theorem 8.2.3, we compute

λ (x ·y) = (λx) ·y = (Ax) ·y = x · (Ay) = x · (µy) = µ(x ·y)

Hence (λ −µ)(x ·y) = 0, and so x ·y = 0 because λ 6= µ .

Now the procedure for diagonalizing a symmetric n×n matrix is clear. Find the distinct eigenval-
ues (all real by Theorem 5.5.7) and find orthonormal bases for each eigenspace (the Gram-Schmidt
algorithm may be needed). Then the set of all these basis vectors is orthonormal (by Theorem 8.2.4)
and contains n vectors. Here is an example.

Example 8.2.5

Orthogonally diagonalize the symmetric matrix A =

 8 −2 2
−2 5 4

2 4 5

.

Solution. The characteristic polynomial is

cA(x) = det

 x−8 2 −2
2 x−5 −4
−2 −4 x−5

= x(x−9)2

Hence the distinct eigenvalues are 0 and 9 of multiplicities 1 and 2, respectively, so
dim (E0) = 1 and dim (E9) = 2 by Theorem 5.5.6 (A is diagonalizable, being symmetric).
Gaussian elimination gives

E0(A) = span{x1}, x1 =

 1
2

−2

 , and E9(A) = span


 −2

1
0

 ,

 2
0
1


The eigenvectors in E9 are both orthogonal to x1 as Theorem 8.2.4 guarantees, but not to
each other. However, the Gram-Schmidt process yields an orthogonal basis

{x2, x3} of E9(A) where x2 =

 −2
1
0

 and x3 =

 2
4
5


Normalizing gives orthonormal vectors {1

3x1, 1√
5
x2, 1

3
√

5
x3}, so

P =
[

1
3x1

1√
5
x2

1
3
√

5
x3

]
= 1

3
√

5


√

5 −6 2
2
√

5 3 4
−2

√
5 0 5


is an orthogonal matrix such that P−1AP is diagonal.
It is worth noting that other, more convenient, diagonalizing matrices P exist. For example,

y2 =

 2
1
2

 and y3 =

 −2
2
1

 lie in E9(A) and they are orthogonal. Moreover, they both
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have norm 3 (as does x1), so

Q =
[ 1

3x1
1
3y2

1
3y3

]
= 1

3

 1 2 −2
2 1 2

−2 2 1


is a nicer orthogonal matrix with the property that Q−1AQ is diagonal.

O
x1x2 = 1

x1

x2

O y2
1 − y2

2 = 1

y1y2

If A is symmetric and a set of orthogonal eigenvectors of A is given,
the eigenvectors are called principal axes of A. The name comes from
geometry. An expression q = ax2

1 +bx1x2 + cx2
2 is called a quadratic

form in the variables x1 and x2, and the graph of the equation q = 1 is
called a conic in these variables. For example, if q = x1x2, the graph
of q = 1 is given in the first diagram.

But if we introduce new variables y1 and y2 by setting x1 = y1+y2
and x2 = y1−y2, then q becomes q = y2

1−y2
2, a diagonal form with no

cross term y1y2 (see the second diagram). Because of this, the y1 and
y2 axes are called the principal axes for the conic (hence the name).
Orthogonal diagonalization provides a systematic method for finding
principal axes. Here is an illustration.

Example 8.2.6

Find principal axes for the quadratic form q = x2
1 −4x1x2 + x2

2.

Solution. In order to utilize diagonalization, we first express q in matrix form. Observe that

q =
[

x1 x2
][ 1 −4

0 1

][
x1
x2

]
The matrix here is not symmetric, but we can remedy that by writing

q = x2
1 −2x1x2 −2x2x1 + x2

2

Then we have
q =

[
x1 x2

][ 1 −2
−2 1

][
x1
x2

]
= xT Ax

where x =

[
x1
x2

]
and A =

[
1 −2

−2 1

]
is symmetric. The eigenvalues of A are λ1 = 3 and

λ2 =−1, with corresponding (orthogonal) eigenvectors x1 =

[
1

−1

]
and x2 =

[
1
1

]
. Since

‖x1‖= ‖x2‖=
√

2, so

P = 1√
2

[
1 1

−1 1

]
is orthogonal and PT AP = D =

[
3 0
0 −1

]
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Now define new variables
[

y1
y2

]
= y by y = PT x, equivalently x = Py (since P−1 = PT ).

Hence
y1 =

1√
2
(x1 − x2) and y2 =

1√
2
(x1 + x2)

In terms of y1 and y2, q takes the form

q = xT Ax = (Py)T A(Py) = yT (PT AP)y = yT Dy = 3y2
1 − y2

2

Note that y = PT x is obtained from x by a counterclockwise rotation of π

4 (see
Theorem 2.4.6).

Observe that the quadratic form q in Example 8.2.6 can be diagonalized in other ways. For
example

q = x2
1 −4x1x2 + x2

2 = z2
1 − 1

3z2
2

where z1 = x1 −2x2 and z2 = 3x2. We examine this more carefully in Section ??.
If we are willing to replace “diagonal” by “upper triangular” in the principal axes theorem, we

can weaken the requirement that A is symmetric to insisting only that A has real eigenvalues.

Theorem 8.2.5: Triangulation Theorem

If A is an n×n matrix with n real eigenvalues, an orthogonal matrix P exists such that
PT AP is upper triangular.4

Proof. We modify the proof of Theorem 8.2.2. If Ax1 = λ1x1 where ‖x1‖= 1, let {x1, x2, . . . , xn}
be an orthonormal basis of Rn, and let P1 =

[
x1 x2 · · · xn

]
. Then P1 is orthogonal and PT

1 AP1 =[
λ1 B
0 A1

]
in block form. By induction, let QT A1Q = T1 be upper triangular where Q is of size

(n−1)× (n−1) and orthogonal. Then P2 =

[
1 0
0 Q

]
is orthogonal, so P = P1P2 is also orthogonal

and PT AP =

[
λ1 BQ
0 T1

]
is upper triangular.

The proof of Theorem 8.2.5 gives no way to construct the matrix P. However, an algorithm will
be given in Section ?? where an improved version of Theorem 8.2.5 is presented. In a different
direction, a version of Theorem 8.2.5 holds for an arbitrary matrix with complex entries (Schur’s
theorem in Section ??).

As for a diagonal matrix, the eigenvalues of an upper triangular matrix are displayed along the
main diagonal. Because A and PT AP have the same determinant and trace whenever P is orthogonal,
Theorem 8.2.5 gives:

4There is also a lower triangular version.
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Corollary 8.2.1

If A is an n×n matrix with real eigenvalues λ1, λ2, . . . , λn (possibly not all distinct), then
det A = λ1λ2 . . .λn and tr A = λ1 +λ2 + · · ·+λn.

This corollary remains true even if the eigenvalues are not real (using Schur’s theorem).

Exercises for 8.2

Exercise 8.2.1 Normalize the rows to make each
of the following matrices orthogonal.

A =

[
1 1

−1 1

]
a) A =

[
3 −4
4 3

]
b)

A =

[
1 2

−4 2

]
c)

A =

[
a b

−b a

]
, (a, b) 6= (0, 0)d)

A =

 cosθ −sinθ 0
sinθ cosθ 0

0 0 2

e)

A =

 2 1 −1
1 −1 1
0 1 1

f)

A =

 −1 2 2
2 −1 2
2 2 −1

g)

A =

 2 6 −3
3 2 6

−6 3 2

h)

b. 1
5

[
3 −4
4 3

]

d. 1√
a2+b2

[
a b

−b a

]

f.


2√
6

1√
6

− 1√
6

1√
3

− 1√
3

1√
3

0 1√
2

1√
2



h. 1
7

 2 6 −3
3 2 6

−6 3 2



Exercise 8.2.2 is diagonal and that all diagonal
entries are 1 or −1.
We have PT = P−1; this matrix is lower triangu-
lar (left side) and also upper triangular (right side–
see Lemma 2.7.1), and so is diagonal. But then
P = PT = P−1, so P2 = I. This implies that the diag-
onal entries of P are all ±1.

Exercise 8.2.3 If P is orthogonal, show that kP is
orthogonal if and only if k = 1 or k =−1.

Exercise 8.2.4 If the first two rows of an orthog-
onal matrix are (1

3 , 2
3 , 2

3) and (2
3 , 1

3 , −2
3 ), find all

possible third rows.

Exercise 8.2.5 For each matrix A, find an orthog-
onal matrix P such that P−1AP is diagonal.

A =

[
0 1
1 0

]
a) A =

[
1 −1

−1 1

]
b)

A =

 3 0 0
0 2 2
0 2 5

c) A =

 3 0 7
0 5 0
7 0 3

d)

A =

 1 1 0
1 1 0
0 0 2

e) A=

 5 −2 −4
−2 8 −2
−4 −2 5

f)

A =


5 3 0 0
3 5 0 0
0 0 7 1
0 0 1 7

g)
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A =


3 5 −1 1
5 3 1 −1

−1 1 3 5
1 −1 5 3

h)

b. 1√
2

[
1 −1
1 1

]

d. 1√
2

 0 1 1√
2 0 0
0 1 −1



f. 1
3
√

2

 2
√

2 3 1√
2 0 −4

2
√

2 −3 1

 or 1
3

 2 −2 1
1 2 2
2 1 −2



h. 1
2


1 −1

√
2 0

−1 1
√

2 0
−1 −1 0

√
2

1 1 0
√

2



Exercise 8.2.6 Consider A =

 0 a 0
a 0 c
0 c 0

 where

one of a, c 6= 0. Show that cA(x) = x(x −
k)(x + k), where k =

√
a2 + c2 and find an or-

thogonal matrix P such that P−1AP is diagonal.

P = 1√
2k

 c
√

2 a a
0 k −k

−a
√

2 c c


Exercise 8.2.7 Consider A =

 0 0 a
0 b 0
a 0 0

. Show

that cA(x) = (x−b)(x−a)(x+a) and find an orthog-
onal matrix P such that P−1AP is diagonal.

Exercise 8.2.8 Given A =

[
b a
a b

]
, show that

cA(x) = (x−a−b)(x+a−b) and find an orthogonal
matrix P such that P−1AP is diagonal.

Exercise 8.2.9 Consider A =

 b 0 a
0 b 0
a 0 b

. Show

that cA(x) = (x− b)(x− b− a)(x− b+ a) and find an
orthogonal matrix P such that P−1AP is diagonal.

Exercise 8.2.10 In each case find new variables y1
and y2 that diagonalize the quadratic form q.

q = x2
1 +6x1x2 + x2

2a) q = x2
1 +4x1x2 −2x2

2b)

b. y1 =
1√
5
(−x1 +2x2) and y2 =

1√
5
(2x1 + x2); q =

−3y2
1 +2y2

2.

Exercise 8.2.11 Show that the following are equiv-
alent for a symmetric matrix A.

A is orthogonal.a) A2 = I.b)
All eigenvalues of A are ±1.c)

[Hint: For (b) if and only if (c), use Theorem 8.2.2.]

c. ⇒ a. By Theorem 8.2.1 let P−1AP = D =
diag (λ1, . . . , λn) where the λi are the eigen-
values of A. By c. we have λi =±1 for each i,
whence D2 = I. But then A2 = (PDP−1)2 =
PD2P−1 = I. Since A is symmetric this is
AAT = I, proving a.

Exercise 8.2.12 We call matrices A and B orthog-
onally similar (and write A ◦∼ B) if B = PT AP for an
orthogonal matrix P.

a. Show that A ◦∼ A for all A; A ◦∼ B ⇒ B ◦∼ A; and
A ◦∼ B and B ◦∼C ⇒ A ◦∼C.

b. Show that the following are equivalent for two
symmetric matrices A and B.

i. A and B are similar.
ii. A and B are orthogonally similar.
iii. A and B have the same eigenvalues.

Exercise 8.2.13 Assume that A and B are orthog-
onally similar (Exercise 8.2.12).

a. If A and B are invertible, show that A−1 and
B−1 are orthogonally similar.

b. Show that A2 and B2 are orthogonally similar.

c. Show that, if A is symmetric, so is B.
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b. If B = PT AP = P−1, then B2 = PT APPT AP =
PT A2P.

Exercise 8.2.14 If A is symmetric, show that every
eigenvalue of A is nonnegative if and only if A = B2

for some symmetric matrix B.

Exercise 8.2.15 Prove the converse of Theo-
rem 8.2.3: If (Ax) ·y = x · (Ay) for all n-columns x
and y, then A is symmetric.
If x and y are respectively columns i and j of In, then
xT AT y=xT Ay shows that the (i, j)-entries of AT and
A are equal.

Exercise 8.2.16 Show that every eigenvalue of A
is zero if and only if A is nilpotent (Ak = 0 for some
k ≥ 1).

Exercise 8.2.17 If A has real eigenvalues, show
that A = B+C where B is symmetric and C is nilpo-
tent.
[Hint: Theorem 8.2.5.]

Exercise 8.2.18 Let P be an orthogonal matrix.

a. Show that det P = 1 or det P =−1.

b. Give 2× 2 examples of P such that det P = 1
and det P =−1.

c. If det P =−1, show that I +P has no inverse.
[Hint: PT (I +P) = (I +P)T .]

d. If P is n×n and det P 6= (−1)n, show that I−P
has no inverse. [Hint: PT (I −P) =−(I −P)T .]

b. det
[

cosθ −sinθ

sinθ cosθ

]
= 1

and det
[

cosθ sinθ

sinθ −cosθ

]
= −1 [Remark:

These are the only 2×2 examples.]

d. Use the fact that P−1 = PT to show that
PT (I−P) =−(I−P)T . Now take determinants
and use the hypothesis that det P 6= (−1)n.

Exercise 8.2.19 We call a square matrix E a
projection matrix if E2 = E = ET . (See Exercise
8.1.17.)

a. If E is a projection matrix, show that P =
I −2E is orthogonal and symmetric.

b. If P is orthogonal and symmetric, show that
E = 1

2(I −P) is a projection matrix.

c. If U is m×n and UTU = I (for example, a unit
column in Rn), show that E = UUT is a pro-
jection matrix.

Exercise 8.2.20 A matrix that we obtain from
the identity matrix by writing its rows in a different
order is called a permutation matrix. Show that
every permutation matrix is orthogonal.

Exercise 8.2.21 If the rows r1, . . . , rn of the n×n
matrix A = [ai j] are orthogonal, show that the (i, j)-
entry of A−1 is a ji

‖r j‖2 .
We have AAT = D, where D is diagonal with main
diagonal entries ‖R1‖2, . . . , ‖Rn‖2. Hence A−1 =
AT D−1, and the result follows because D−1 has di-
agonal entries 1/‖R1‖2, . . . , 1/‖Rn‖2.

Exercise 8.2.22

a. Let A be an m×n matrix. Show that the fol-
lowing are equivalent.

i. A has orthogonal rows.
ii. A can be factored as A = DP, where D

is invertible and diagonal and P has or-
thonormal rows.

iii. AAT is an invertible, diagonal matrix.

b. Show that an n× n matrix A has orthogonal
rows if and only if A can be factored as A=DP,
where P is orthogonal and D is diagonal and
invertible.

Exercise 8.2.23 Let A be a skew-symmetric ma-
trix; that is, AT = −A. Assume that A is an n× n
matrix.

a. Show that I+A is invertible. [Hint: By Theo-
rem 2.4.5, it suffices to show that (I+A)x= 0,
x in Rn, implies x = 0. Compute x ·x = xT x,
and use the fact that Ax =−x and A2x = x.]

b. Show that P = (I −A)(I +A)−1 is orthogonal.

c. Show that every orthogonal matrix P such
that I + P is invertible arises as in part (b)
from some skew-symmetric matrix A.
[Hint: Solve P = (I −A)(I +A)−1 for A.]
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b. Because I −A and I +A commute, PPT = (I −
A)(I + A)−1[(I + A)−1]T (I − A)T = (I − A)(I +
A)−1(I −A)−1(I +A) = I.

Exercise 8.2.24 Show that the following are equiv-
alent for an n×n matrix P.

a. P is orthogonal.

b. ‖Px‖= ‖x‖ for all columns x in Rn.

c. ‖Px−Py‖ = ‖x−y‖ for all columns x and y
in Rn.

d. (Px) ·(Py)=x ·y for all columns x and y in Rn.
[Hints: For (c) ⇒ (d), see Exercise 5.3.14(a).
For (d) ⇒ (a), show that column i of P equals
Pei, where ei is column i of the identity ma-
trix.]

Exercise 8.2.25 Show that every 2 × 2 orthog-

onal matrix has the form
[

cosθ −sinθ

sinθ cosθ

]
or[

cosθ sinθ

sinθ −cosθ

]
for some angle θ .

[Hint: If a2 +b2 = 1, then a = cosθ and b = sinθ for
some angle θ .]

Exercise 8.2.26 Use Theorem 8.2.5 to show that
every symmetric matrix is orthogonally diagonaliz-
able.
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8.3 Positive Definite Matrices

All the eigenvalues of any symmetric matrix are real; this section is about the case in which the
eigenvalues are positive. These matrices, which arise whenever optimization (maximum and min-
imum) problems are encountered, have countless applications throughout science and engineering.
They also arise in statistics (for example, in factor analysis used in the social sciences) and in ge-
ometry (see Section ??). We will encounter them again in Chapter ?? when describing all inner
products in Rn.

Definition 8.5 Positive Definite Matrices
A square matrix is called positive definite if it is symmetric and all its eigenvalues λ are
positive, that is λ > 0.

Because these matrices are symmetric, the principal axes theorem plays a central role in the
theory.

Theorem 8.3.1
If A is positive definite, then it is invertible and det A > 0.

Proof. If A is n× n and the eigenvalues are λ1, λ2, . . . , λn, then det A = λ1λ2 · · ·λn > 0 by the
principal axes theorem (or the corollary to Theorem 8.2.5).

If x is a column in Rn and A is any real n×n matrix, we view the 1×1 matrix xT Ax as a real
number. With this convention, we have the following characterization of positive definite matrices.

Theorem 8.3.2
A symmetric matrix A is positive definite if and only if xT Ax > 0 for every column x 6= 0 in
Rn.

Proof. A is symmetric so, by the principal axes theorem, let PT AP = D = diag (λ1, λ2, . . . , λn)
where P−1 = PT and the λi are the eigenvalues of A. Given a column x in Rn, write y = PT x =[

y1 y2 . . . yn
]T . Then

xT Ax = xT (PDPT )x = yT Dy = λ1y2
1 +λ2y2

2 + · · ·+λny2
n (8.3)

If A is positive definite and x 6= 0, then xT Ax > 0 by (8.3) because some y j 6= 0 and every λi > 0.
Conversely, if xT Ax > 0 whenever x 6= 0, let x = Pe j 6= 0 where e j is column j of In. Then y = e j,
so (8.3) reads λ j = xT Ax > 0.

Note that Theorem 8.3.2 shows that the positive definite matrices are exactly the symmetric matrices
A for which the quadratic form q = xT Ax takes only positive values.
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Example 8.3.1

If U is any invertible n×n matrix, show that A =UTU is positive definite.

Solution. If x is in Rn and x 6= 0, then

xT Ax = xT (UTU)x = (Ux)T (Ux) = ‖Ux‖2 > 0

because Ux 6= 0 (U is invertible). Hence Theorem 8.3.2 applies.

It is remarkable that the converse to Example 8.3.1 is also true. In fact every positive definite
matrix A can be factored as A =UTU where U is an upper triangular matrix with positive elements
on the main diagonal. However, before verifying this, we introduce another concept that is central
to any discussion of positive definite matrices.

If A is any n×n matrix, let (r)A denote the r× r submatrix in the upper left corner of A; that
is, (r)A is the matrix obtained from A by deleting the last n− r rows and columns. The matrices
(1)A, (2)A, (3)A, . . . , (n)A = A are called the principal submatrices of A.

Example 8.3.2

If A =

 10 5 2
5 3 2
2 2 3

 then (1)A = [10], (2)A =

[
10 5
5 3

]
and (3)A = A.

Lemma 8.3.1

If A is positive definite, so is each principal submatrix (r)A for r = 1, 2, . . . , n.

Proof. Write A =

[
(r)A P

Q R

]
in block form. If y 6= 0 in Rr, write x =

[
y
0

]
in Rn.

Then x 6= 0, so the fact that A is positive definite gives

0 < xT Ax =
[

yT 0
][ (r)A P

Q R

][
y
0

]
= yT ((r)A)y

This shows that (r)A is positive definite by Theorem 8.3.2.5

If A is positive definite, Lemma 8.3.1 and Theorem 8.3.1 show that det ((r)A) > 0 for every
r. This proves part of the following theorem which contains the converse to Example 8.3.1, and
characterizes the positive definite matrices among the symmetric ones.

5A similar argument shows that, if B is any matrix obtained from a positive definite matrix A by deleting certain
rows and deleting the same columns, then B is also positive definite.
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Theorem 8.3.3
The following conditions are equivalent for a symmetric n×n matrix A:

1. A is positive definite.

2. det ((r)A)> 0 for each r = 1, 2, . . . , n.

3. A =UTU where U is an upper triangular matrix with positive entries on the main
diagonal.

Furthermore, the factorization in (3) is unique (called the Cholesky factorization6of A).

Proof. First, (3) ⇒ (1) by Example 8.3.1, and (1) ⇒ (2) by Lemma 8.3.1 and Theorem 8.3.1.
(2) ⇒ (3). Assume (2) and proceed by induction on n. If n = 1, then A = [a] where a > 0 by (2),

so take U = [
√

a]. If n > 1, write B =(n−1) A. Then B is symmetric and satisfies (2) so, by induction,
we have B = UTU as in (3) where U is of size (n− 1)× (n− 1). Then, as A is symmetric, it has

block form A =

[
B p

pT b

]
where p is a column in Rn−1 and b is in R. If we write x = (UT )−1p and

c = b−xT x, block multiplication gives

A =

[
UTU p
pT b

]
=

[
UT 0
xT 1

][
U x
0 c

]
as the reader can verify. Taking determinants and applying Theorem 3.1.5 gives det A= det (UT ) det U ·
c = c(det U)2. Hence c > 0 because det A > 0 by (2), so the above factorization can be written

A =

[
UT 0
xT √

c

][
U x
0

√
c

]
Since U has positive diagonal entries, this proves (3).

As to the uniqueness, suppose that A=UTU =UT
1 U1 are two Cholesky factorizations. Now write

D = UU−1
1 = (UT )−1UT

1 . Then D is upper triangular, because D = UU−1
1 , and lower triangular,

because D = (UT )−1UT
1 , and so it is a diagonal matrix. Thus U = DU1 and U1 = DU , so it suffices

to show that D = I. But eliminating U1 gives U = D2U , so D2 = I because U is invertible. Since the
diagonal entries of D are positive (this is true of U and U1), it follows that D = I.

The remarkable thing is that the matrix U in the Cholesky factorization is easy to obtain from
A using row operations. The key is that Step 1 of the following algorithm is possible for any positive
definite matrix A. A proof of the algorithm is given following Example 8.3.3.

Algorithm for the Cholesky Factorization

If A is a positive definite matrix, the Cholesky factorization A =UTU can be obtained as
follows:

Step 1. Carry A to an upper triangular matrix U1 with positive diagonal entries using row

6Andre-Louis Cholesky (1875–1918), was a French mathematician who died in World War I. His factorization was
published in 1924 by a fellow officer.
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operations each of which adds a multiple of a row to a lower row.

Step 2. Obtain U from U1 by dividing each row of U1 by the square root of the diagonal
entry in that row.

Example 8.3.3

Find the Cholesky factorization of A =

 10 5 2
5 3 2
2 2 3

.

Solution. The matrix A is positive definite by Theorem 8.3.3 because det (1)A = 10 > 0,
det (2)A = 5 > 0, and det (3)A = det A = 3 > 0. Hence Step 1 of the algorithm is carried out
as follows:

A =

 10 5 2
5 3 2
2 2 3

→

 10 5 2
0 1

2 1
0 1 13

5

→

 10 5 2
0 1

2 1
0 0 3

5

=U1

Now carry out Step 2 on U1 to obtain U =


√

10 5√
10

2√
10

0 1√
2

√
2

0 0
√

3√
5

.

The reader can verify that UTU = A.

Proof of the Cholesky Algorithm. If A is positive definite, let A =UTU be the Cholesky factor-
ization, and let D = diag (d1, . . . , dn) be the common diagonal of U and UT . Then UT D−1 is lower
triangular with ones on the diagonal (call such matrices LT-1). Hence L = (UT D−1)−1 is also LT-1,
and so In → L by a sequence of row operations each of which adds a multiple of a row to a lower row
(verify; modify columns right to left). But then A → LA by the same sequence of row operations
(see the discussion preceding Theorem 2.5.1). Since LA = [D(UT )−1][UTU ] = DU is upper triangular
with positive entries on the diagonal, this shows that Step 1 of the algorithm is possible.

Turning to Step 2, let A → U1 as in Step 1 so that U1 = L1A where L1 is LT-1. Since A is
symmetric, we get

L1UT
1 = L1(L1A)T = L1AT LT

1 = L1ALT
1 =U1LT

1 (8.4)
Let D1 = diag (e1, . . . , en) denote the diagonal of U1. Then (8.4) gives L1(UT

1 D−1
1 ) = U1LT

1 D−1
1 .

This is both upper triangular (right side) and LT-1 (left side), and so must equal In. In particular,
UT

1 D−1
1 = L−1

1 . Now let D2 = diag (
√

e1, . . . ,
√

en), so that D2
2 = D1. If we write U = D−1

2 U1 we have

UTU = (UT
1 D−1

2 )(D−1
2 U1) =UT

1 (D2
2)

−1U1 = (UT
1 D−1

1 )U1 = (L−1
1 )U1 = A

This proves Step 2 because U = D−1
2 U1 is formed by dividing each row of U1 by the square root of

its diagonal entry (verify).



8.3. Positive Definite Matrices 425

Exercises for 8.3

Exercise 8.3.1 Find the Cholesky decomposition
of each of the following matrices.[

4 3
3 5

]
a)

[
2 −1

−1 1

]
b) 12 4 3

4 2 −1
3 −1 7

c)

 20 4 5
4 2 3
5 3 5

d)

b. U =
√

2
2

[
2 −1
0 1

]

d. U = 1
30

 60
√

5 12
√

5 15
√

5
0 6

√
30 10

√
30

0 0 5
√

15


Exercise 8.3.2

a. If A is positive definite, show that Ak is posi-
tive definite for all k ≥ 1.

b. Prove the converse to (a) when k is odd.

c. Find a symmetric matrix A such that A2 is
positive definite but A is not.

b. If λ k > 0, k odd, then λ > 0.

Exercise 8.3.3 Let A =

[
1 a
a b

]
. If a2 < b, show

that A is positive definite and find the Cholesky fac-
torization.

Exercise 8.3.4 If A and B are positive definite and
r > 0, show that A+B and rA are both positive def-
inite.
If x 6= 0, then xT Ax> 0 and xT Bx> 0. Hence xT (A+
B)x = xT Ax+xT Bx > 0 and xT (rA)x = r(xT Ax)> 0,
as r > 0.

Exercise 8.3.5 If A and B are positive definite,

show that
[

A 0
0 B

]
is positive definite.

Exercise 8.3.6 If A is an n×n positive definite ma-
trix and U is an n×m matrix of rank m, show that
UT AU is positive definite.
Let x 6= 0 in Rn. Then xT (UT AU)x = (Ux)T A(Ux)>
0 provided Ux 6= 0. But if U =

[
c1 c2 . . . cn

]
and x= (x1, x2, . . . , xn), then Ux= x1c1+x2c2+ · · ·+
xncn 6= 0 because x 6= 0 and the ci are independent.

Exercise 8.3.7 If A is positive definite, show that
each diagonal entry is positive.

Exercise 8.3.8 Let A0 be formed from A by delet-
ing rows 2 and 4 and deleting columns 2 and 4. If A
is positive definite, show that A0 is positive definite.

Exercise 8.3.9 If A is positive definite, show that
A =CCT where C has orthogonal columns.

Exercise 8.3.10 If A is positive definite,
show that A = C2 where C is positive definite.

Let PT AP = D = diag (λ1, . . . , λn) where PT = P.
Since A is positive definite, each eigenvalue λi > 0.
If B = diag (

√
λ1, . . . ,

√
λn) then B2 = D, so A =

PB2PT = (PBPT )2. Take C = PBPT . Since C has
eigenvalues

√
λi > 0, it is positive definite.

Exercise 8.3.11 Let A be a positive definite ma-
trix. If a is a real number, show that aA is positive
definite if and only if a > 0.

Exercise 8.3.12

a. Suppose an invertible matrix A can be factored
in Mnn as A= LDU where L is lower triangular
with 1s on the diagonal, U is upper triangular
with 1s on the diagonal, and D is diagonal with
positive diagonal entries. Show that the fac-
torization is unique: If A = L1D1U1 is another
such factorization, show that L1 = L, D1 = D,
and U1 =U .

b. Show that a matrix A is positive definite if and
only if A is symmetric and admits a factoriza-
tion A = LDU as in (a).
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b. If A is positive definite, use Theorem 8.3.1
to write A = UTU where U is upper trian-
gular with positive diagonal D. Then A =
(D−1U)T D2(D−1U) so A = L1D1U1 is such a
factorization if U1 = D−1U , D1 = D2, and L1 =
UT

1 . Conversely, let AT = A = LDU be such a
factorization. Then UT DT LT =AT =A= LDU ,
so L = UT by (a). Hence A = LDLT = V TV
where V = LD0 and D0 is diagonal with D2

0 =D
(the matrix D0 exists because D has positive
diagonal entries). Hence A is symmetric, and

it is positive definite by Example 8.3.1.

Exercise 8.3.13 Let A be positive definite and
write dr = det (r)A for each r = 1, 2, . . . , n. If U
is the upper triangular matrix obtained in step 1
of the algorithm, show that the diagonal elements
u11, u22, . . . , unn of U are given by u11 = d1, u j j =
d j/d j−1 if j > 1. [Hint: If LA = U where L is lower
triangular with 1s on the diagonal, use block mul-
tiplication to show that det (r)A = det (r)U for each
r.]
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8.4 QR-Factorization7

One of the main virtues of orthogonal matrices is that they can be easily inverted—the transpose
is the inverse. This fact, combined with the factorization theorem in this section, provides a useful
way to simplify many matrix calculations (for example, in least squares approximation).

Definition 8.6 QR-factorization

Let A be an m×n matrix with independent columns. A QR-factorization of A expresses
it as A = QR where Q is m×n with orthonormal columns and R is an invertible and upper
triangular matrix with positive diagonal entries.

The importance of the factorization lies in the fact that there are computer algorithms that accom-
plish it with good control over round-off error, making it particularly useful in matrix calculations.
The factorization is a matrix version of the Gram-Schmidt process.

Suppose A=
[

c1 c2 · · · cn
]

is an m×n matrix with linearly independent columns c1, c2, . . . , cn.
The Gram-Schmidt algorithm can be applied to these columns to provide orthogonal columns
f1, f2, . . . , fn where f1 = c1 and

fk = ck − ck·f1
‖f1‖2 f1 − ck·f2

‖f2‖2 f2 −·· ·− ck·fk−1
‖fk−1‖2 fk−1

for each k = 2, 3, . . . , n. Now write qk =
1

‖fk‖fk for each k. Then q1, q2, . . . , qn are orthonormal
columns, and the above equation becomes

‖fk‖qk = ck − (ck ·q1)q1 − (ck ·q2)q2 −·· ·− (ck ·qk−1)qk−1

Using these equations, express each ck as a linear combination of the qi:
c1 = ‖f1‖q1
c2 = (c2 ·q1)q1 +‖f2‖q2
c3 = (c3 ·q1)q1 +(c3 ·q2)q2 +‖f3‖q3
... ...

cn = (cn ·q1)q1 +(cn ·q2)q2 +(cn ·q3)q3 + · · ·+‖fn‖qn

These equations have a matrix form that gives the required factorization:
A =

[
c1 c2 c3 · · · cn

]

=
[

q1 q2 q3 · · · qn
]


‖f1‖ c2 ·q1 c3 ·q1 · · · cn ·q1
0 ‖f2‖ c3 ·q2 · · · cn ·q2
0 0 ‖f3‖ · · · cn ·q3
... ... ... . . . ...
0 0 0 · · · ‖fn‖

 (8.5)

Here the first factor Q =
[

q1 q2 q3 · · · qn
]

has orthonormal columns, and the second factor is
an n×n upper triangular matrix R with positive diagonal entries (and so is invertible). We record
this in the following theorem.

7This section is not used elsewhere in the book
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Theorem 8.4.1: QR-Factorization

Every m×n matrix A with linearly independent columns has a QR-factorization A = QR
where Q has orthonormal columns and R is upper triangular with positive diagonal entries.

The matrices Q and R in Theorem 8.4.1 are uniquely determined by A; we return to this below.

Example 8.4.1

Find the QR-factorization of A =


1 1 0

−1 0 1
0 1 1
0 0 1

.

Solution. Denote the columns of A as c1, c2, and c3, and observe that {c1, c2, c3} is
independent. If we apply the Gram-Schmidt algorithm to these columns, the result is:

f1 = c1 =


1

−1
0
0

 , f2 = c2 − 1
2f1 =


1
2
1
2
1
0

 , and f3 = c3 +
1
2f1 − f2 =


0
0
0
1

 .

Write q j =
1

‖f j‖f j for each j, so {q1, q2, q3} is orthonormal. Then equation (8.5) preceding
Theorem 8.4.1 gives A = QR where

Q =
[

q1 q2 q3
]
=


1√
2

1√
6

0
−1√

2
1√
6

0

0 2√
6

0

0 0 1

= 1√
6


√

3 1 0
−
√

3 1 0
0 2 0
0 0

√
6



R =

 ‖f1‖ c2 ·q1 c3 ·q1
0 ‖f2‖ c3 ·q2
0 0 ‖f3‖

=


√

2 1√
2

−1√
2

0
√

3√
2

√
3√
2

0 0 1

= 1√
2

 2 1 −1
0

√
3

√
3

0 0
√

2


The reader can verify that indeed A = QR.

If a matrix A has independent rows and we apply QR-factorization to AT , the result is:

Corollary 8.4.1

If A has independent rows, then A factors uniquely as A = LP where P has orthonormal rows
and L is an invertible lower triangular matrix with positive main diagonal entries.

Since a square matrix with orthonormal columns is orthogonal, we have
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Theorem 8.4.2
Every square, invertible matrix A has factorizations A = QR and A = LP where Q and P are
orthogonal, R is upper triangular with positive diagonal entries, and L is lower triangular
with positive diagonal entries.

Remark
In Section ?? we found how to find a best approximation z to a solution of a (possibly inconsistent)
system Ax = b of linear equations: take z to be any solution of the “normal” equations (AT A)z =
AT b. If A has independent columns this z is unique (AT A is invertible by Theorem 5.4.3), so it
is often desirable to compute (AT A)−1. This is particularly useful in least squares approximation
(Section ??). This is simplified if we have a QR-factorization of A (and is one of the main reasons
for the importance of Theorem 8.4.1). For if A = QR is such a factorization, then QT Q = In because
Q has orthonormal columns (verify), so we obtain

AT A = RT QT QR = RT R

Hence computing (AT A)−1 amounts to finding R−1, and this is a routine matter because R is upper
triangular. Thus the difficulty in computing (AT A)−1 lies in obtaining the QR-factorization of A.

We conclude by proving the uniqueness of the QR-factorization.

Theorem 8.4.3
Let A be an m×n matrix with independent columns. If A = QR and A = Q1R1 are
QR-factorizations of A, then Q1 = Q and R1 = R.

Proof. Write Q =
[

c1 c2 · · · cn
]

and Q1 =
[

d1 d2 · · · dn
]

in terms of their columns, and
observe first that QT Q = In = QT

1 Q1 because Q and Q1 have orthonormal columns. Hence it suffices
to show that Q1 = Q (then R1 = QT

1 A = QT A = R). Since QT
1 Q1 = In, the equation QR = Q1R1 gives

QT
1 Q = R1R−1; for convenience we write this matrix as

QT
1 Q = R1R−1 =

[
ti j

]
This matrix is upper triangular with positive diagonal elements (since this is true for R and R1), so
tii > 0 for each i and ti j = 0 if i > j. On the other hand, the (i, j)-entry of QT

1 Q is dT
i c j = di ·c j, so

we have di ·c j = ti j for all i and j. But each c j is in span{d1, d2, . . . , dn} because Q = Q1(R1R−1).
Hence the expansion theorem gives

c j = (d1 ·c j)d1 +(d2 ·c j)d2 + · · ·+(dn ·c j)dn = t1 jd1 + t2 jd2 + · · ·+ t j jdi

because di ·c j = ti j = 0 if i > j. The first few equations here are

c1 = t11d1
c2 = t12d1 + t22d2
c3 = t13d1 + t23d2 + t33d3
c4 = t14d1 + t24d2 + t34d3 + t44d4
... ...
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The first of these equations gives 1 = ‖c1‖= ‖t11d1‖= |t11|‖d1‖= t11, whence c1 = d1. But then we
have t12 = d1 ·c2 = c1 ·c2 = 0, so the second equation becomes c2 = t22d2. Now a similar argument
gives c2 = d2, and then t13 = 0 and t23 = 0 follows in the same way. Hence c3 = t33d3 and c3 = d3.
Continue in this way to get ci = di for all i. This means that Q1 = Q, which is what we wanted.

Exercises for 8.4

Exercise 8.4.1 In each case find the QR-
factorization of A.

A =

[
1 −1

−1 0

]
a) A =

[
2 1
1 1

]
b)

A =


1 1 1
1 1 0
1 0 0
0 0 0

c) A =


1 1 0

−1 0 1
0 1 1
1 −1 0

d)

b. Q = 1√
5

[
2 −1
1 2

]
, R = 1√

5

[
5 3
0 1

]

d. Q = 1√
3


1 1 0

−1 0 1
0 1 1
1 −1 1

,

R = 1√
3

 3 0 −1
0 3 1
0 0 2


Exercise 8.4.2 Let A and B denote matrices.

a. If A and B have independent columns, show
that AB has independent columns. [Hint:
Theorem 5.4.3.]

b. Show that A has a QR-factorization if and only
if A has independent columns.

c. If AB has a QR-factorization, show that the
same is true of B but not necessarily A. [Hint:

Consider AAT where A =

[
1 0 0
1 1 1

]
.]

If A has a QR-factorization, use (a). For the converse
use Theorem 8.4.1.

Exercise 8.4.3 If R is upper triangular and invert-
ible, show that there exists a diagonal matrix D with
diagonal entries ±1 such that R1 = DR is invertible,
upper triangular, and has positive diagonal entries.

Exercise 8.4.4 If A has independent columns, let
A = QR where Q has orthonormal columns and R is
invertible and upper triangular. [Some authors call
this a QR-factorization of A.] Show that there is a di-
agonal matrix D with diagonal entries ±1 such that
A = (QD)(DR) is the QR-factorization of A. [Hint:
Preceding exercise.]
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8.5 Computing Eigenvalues

In practice, the problem of finding eigenvalues of a matrix is virtually never solved by finding the
roots of the characteristic polynomial. This is difficult for large matrices and iterative methods are
much better. Two such methods are described briefly in this section.

The Power Method

In Chapter 3 our initial rationale for diagonalizing matrices was to be able to compute the powers
of a square matrix, and the eigenvalues were needed to do this. In this section, we are interested in
efficiently computing eigenvalues, and it may come as no surprise that the first method we discuss
uses the powers of a matrix.

Recall that an eigenvalue λ of an n× n matrix A is called a dominant eigenvalue if λ has
multiplicity 1, and

|λ |> |µ| for all eigenvalues µ 6= λ

Any corresponding eigenvector is called a dominant eigenvector of A. When such an eigenvalue
exists, one technique for finding it is as follows: Let x0 in Rn be a first approximation to a dominant
eigenvector λ , and compute successive approximations x1, x2, . . . as follows:

x1 = Ax0 x2 = Ax1 x3 = Ax2 · · ·

In general, we define
xk+1 = Axk for each k ≥ 0

If the first estimate x0 is good enough, these vectors xn will approximate the dominant eigenvector
λ (see below). This technique is called the power method (because xk = Akx0 for each k ≥ 1).
Observe that if z is any eigenvector corresponding to λ , then

z·(Az)
‖z‖2 = z·(λz)

‖z‖2 = λ

Because the vectors x1, x2, . . . , xn, . . . approximate dominant eigenvectors, this suggests that we
define the Rayleigh quotients as follows:

rk =
xk·xk+1
‖xk‖2 for k ≥ 1

Then the numbers rk approximate the dominant eigenvalue λ .

Example 8.5.1

Use the power method to approximate a dominant eigenvector and eigenvalue of
A =

[
1 1
2 0

]
.

Solution. The eigenvalues of A are 2 and −1, with eigenvectors
[

1
1

]
and

[
1

−2

]
. Take
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x0 =

[
1
0

]
as the first approximation and compute x1, x2, . . . , successively, from

x1 = Ax0, x2 = Ax1, . . . . The result is

x1 =

[
1
2

]
, x2 =

[
3
2

]
, x3 =

[
5
6

]
, x4 =

[
11
10

]
, x3 =

[
21
22

]
, . . .

These vectors are approaching scalar multiples of the dominant eigenvector
[

1
1

]
.

Moreover, the Rayleigh quotients are

r1 =
7
5 , r2 =

27
13 , r3 =

115
61 , r4 =

451
221 , . . .

and these are approaching the dominant eigenvalue 2.

To see why the power method works, let λ1, λ2, . . . , λm be eigenvalues of A with λ1 dominant and
let y1, y2, . . . , ym be corresponding eigenvectors. What is required is that the first approximation
x0 be a linear combination of these eigenvectors:

x0 = a1y1 +a2y2 + · · ·+amym with a1 6= 0

If k ≥ 1, the fact that xk = Akx0 and Akyi = λ k
i yi for each i gives

xk = a1λ
k
1 y1 +a2λ

k
2 y2 + · · ·+amλ

k
mym for k ≥ 1

Hence
1

λ k
1
xk = a1y1 +a2

(
λ2
λ1

)k
y2 + · · ·+am

(
λm
λ1

)k
ym

The right side approaches a1y1 as k increases because λ1 is dominant
(∣∣∣ λi

λ1

∣∣∣< 1 for each i > 1
)

.
Because a1 6= 0, this means that xk approximates the dominant eigenvector a1λ k

1 y1.
The power method requires that the first approximation x0 be a linear combination of eigenvec-

tors. (In Example 8.5.1 the eigenvectors form a basis of R2.) But even in this case the method fails

if a1 = 0, where a1 is the coefficient of the dominant eigenvector (try x0 =

[
−1

2

]
in Example 8.5.1).

In general, the rate of convergence is quite slow if any of the ratios
∣∣∣ λi

λ1

∣∣∣ is near 1. Also, because the
method requires repeated multiplications by A, it is not recommended unless these multiplications
are easy to carry out (for example, if most of the entries of A are zero).
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QR-Algorithm

A much better method for approximating the eigenvalues of an invertible matrix A depends on the
factorization (using the Gram-Schmidt algorithm) of A in the form

A = QR

where Q is orthogonal and R is invertible and upper triangular (see Theorem 8.4.2). The QR-
algorithm uses this repeatedly to create a sequence of matrices A1 = A, A2, A3, . . . , as follows:

1. Define A1 = A and factor it as A1 = Q1R1.

2. Define A2 = R1Q1 and factor it as A2 = Q2R2.

3. Define A3 = R2Q2 and factor it as A3 = Q3R3.
...

In general, Ak is factored as Ak = QkRk and we define Ak+1 = RkQk. Then Ak+1 is similar to Ak [in
fact, Ak+1 = RkQk = (Q−1

k Ak)Qk], and hence each Ak has the same eigenvalues as A. If the eigenvalues
of A are real and have distinct absolute values, the remarkable thing is that the sequence of matrices
A1, A2, A3, . . . converges to an upper triangular matrix with these eigenvalues on the main diagonal.
[See below for the case of complex eigenvalues.]

Example 8.5.2

If A =

[
1 1
2 0

]
as in Example 8.5.1, use the QR-algorithm to approximate the eigenvalues.

Solution. The matrices A1, A2, and A3 are as follows:

A1 =

[
1 1
2 0

]
= Q1R1 where Q1 =

1√
5

[
1 2
2 −1

]
and R1 =

1√
5

[
5 1
0 2

]
A2 =

1
5

[
7 9
4 −2

]
=

[
1.4 −1.8

−0.8 −0.4

]
= Q2R2

where Q2 =
1√
65

[
7 4
4 −7

]
and R2 =

1√
65

[
13 11
0 10

]
A3 =

1
13

[
27 −5
8 −14

]
=

[
2.08 −0.38
0.62 −1.08

]

This is converging to
[

2 ∗
0 −1

]
and so is approximating the eigenvalues 2 and −1 on the

main diagonal.

It is beyond the scope of this book to pursue a detailed discussion of these methods. The reader is
referred to J. M. Wilkinson, The Algebraic Eigenvalue Problem (Oxford, England: Oxford University
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Press, 1965) or G. W. Stewart, Introduction to Matrix Computations (New York: Academic Press,
1973). We conclude with some remarks on the QR-algorithm.
Shifting. Convergence is accelerated if, at stage k of the algorithm, a number sk is chosen and
Ak − skI is factored in the form QkRk rather than Ak itself. Then

Q−1
k AkQk = Q−1

k (QkRk + skI)Qk = RkQk + skI

so we take Ak+1 = RkQk + skI. If the shifts sk are carefully chosen, convergence can be greatly
improved.
Preliminary Preparation. A matrix such as

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


is said to be in upper Hessenberg form, and the QR-factorizations of such matrices are greatly
simplified. Given an n×n matrix A, a series of orthogonal matrices H1, H2, . . . , Hm (called House-
holder matrices) can be easily constructed such that

B = HT
m · · ·HT

1 AH1 · · ·Hm

is in upper Hessenberg form. Then the QR-algorithm can be efficiently applied to B and, because
B is similar to A, it produces the eigenvalues of A.
Complex Eigenvalues. If some of the eigenvalues of a real matrix A are not real, the QR-algorithm
converges to a block upper triangular matrix where the diagonal blocks are either 1× 1 (the real
eigenvalues) or 2×2 (each providing a pair of conjugate complex eigenvalues of A).

Exercises for 8.5

Exercise 8.5.1 In each case, find the exact eigen-
values and determine corresponding eigenvectors.

Then start with x0 =

[
1
1

]
and compute x4 and r3

using the power method.

A =

[
2 −4

−3 3

]
a) A =

[
5 2

−3 −2

]
b)

A =

[
1 2
2 1

]
c) A =

[
3 1
1 0

]
d)

b. Eigenvalues 4, −1; eigenvectors
[

2
−1

]
,[

1
−3

]
; x4 =

[
409

−203

]
; r3 = 3.94

d. Eigenvalues λ1 =
1
2(3+

√
13), λ2 =

1
2(3−

√
13);

eigenvectors
[

λ1
1

]
,
[

λ2
1

]
; x4 =

[
142

43

]
;

r3 = 3.3027750 (The true value is λ1 =
3.3027756, to seven decimal places.)

Exercise 8.5.2 In each case, find the exact eigen-
values and then approximate them using the QR-
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algorithm.

A =

[
1 1
1 0

]
a) A =

[
3 1
1 0

]
b)

b. Eigenvalues λ1 =
1
2(3+

√
13) = 3.302776, λ2 =

1
2(3−

√
13) = −0.302776 A1 =

[
3 1
1 0

]
, Q1 =

1√
10

[
3 −1
1 3

]
, R1 =

1√
10

[
10 3
0 −1

]
A2 =

1
10

[
33 −1
−1 −3

]
,

Q2 =
1√

1090

[
33 1
−1 33

]
,

R2 =
1√

1090

[
109 −3

0 −10

]
A3 =

1
109

[
360 1

1 −33

]
=

[
3.302775 0.009174
0.009174 −0.302775

]
Exercise 8.5.3 Apply the power method to

A =

[
0 1

−1 0

]
, starting at x0 =

[
1
1

]
. Does it con-

verge? Explain.

Exercise 8.5.4 If A is symmetric, show that each
matrix Ak in the QR-algorithm is also symmetric.
Deduce that they converge to a diagonal matrix.

Use induction on k. If k = 1, A1 = A. In general
Ak+1 = Q−1

k AkQk = QT
k AkQk, so the fact that AT

k = Ak
implies AT

k+1 = Ak+1. The eigenvalues of A are all
real (Theorem 5.5.5), so the Ak converge to an upper
triangular matrix T . But T must also be symmet-
ric (it is the limit of symmetric matrices), so it is
diagonal.

Exercise 8.5.5 Apply the QR-algorithm to

A =

[
2 −3
1 −2

]
. Explain.

Exercise 8.5.6 Given a matrix A, let Ak, Qk, and
Rk, k ≥ 1, be the matrices constructed in the QR-
algorithm. Show that Ak = (Q1Q2 · · ·Qk)(Rk · · ·R2R1)
for each k ≥ 1 and hence that this is a QR-
factorization of Ak.
[Hint: Show that QkRk = Rk−1Qk−1 for each
k ≥ 2, and use this equality to compute
(Q1Q2 · · ·Qk)(Rk · · ·R2R1) “from the centre out.” Use
the fact that (AB)n+1 = A(BA)nB for any square ma-
trices A and B.]



436 Orthogonality

8.6 The Singular Value Decomposition

When working with a square matrix A it is clearly useful to be able to “diagonalize” A, that is
to find a factorization A = Q−1DQ where Q is invertible and D is diagonal. Unfortunately such a
factorization may not exist for A. However, even if A is not square gaussian elimination provides
a factorization of the form A = PDQ where P and Q are invertible and D is diagonal—the Smith
Normal form (Theorem 2.5.3). However, if A is real we can choose P and Q to be orthogonal real
matrices and D to be real. Such a factorization is called a singular value decomposition (SVD)
for A, one of the most useful tools in applied linear algebra. In this Section we show how to explicitly
compute an SVD for any real matrix A, and illustrate some of its many applications.

We need a fact about two subspaces associated with an m×n matrix A:

im A = {Ax | x in Rn} and col A = span{a | a is a column of A}

Then im A is called the image of A (so named because of the linear transformation Rn → Rm with
x 7→ Ax); and col A is called the column space of A (Definition 5.10). Surprisingly, these spaces
are equal:

Lemma 8.6.1
For any m×n matrix A, im A = col A.

Proof. Let A =
[

a1 a2 · · · an
]

in terms of its columns. Let x ∈ im A, say x = Ay, y in Rn. If
y =

[
y1 y2 · · · yn

]T , then Ay = y1a1 + y2a2 + · · ·+ ynan ∈ col A by Definition 2.5. This shows
that im A ⊆ col A. For the other inclusion, each ak = Aek where ek is column k of In.

8.6.1. Singular Value Decompositions

We know a lot about any real symmetric matrix: Its eigenvalues are real (Theorem 5.5.7), and it is
orthogonally diagonalizable by the Principal Axes Theorem (Theorem 8.2.2). So for any real matrix
A (square or not), the fact that both AT A and AAT are real and symmetric suggests that we can
learn a lot about A by studying them. This section shows just how true this is.

The following Lemma reveals some similarities between AT A and AAT which simplify the state-
ment and the proof of the SVD we are constructing.

Lemma 8.6.2
Let A be a real m×n matrix. Then:

1. The eigenvalues of AT A and AAT are real and non-negative.

2. AT A and AAT have the same set of positive eigenvalues.

Proof.
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1. Let λ be an eigenvalue of AT A, with eigenvector 0 6= q ∈ Rn. Then:

‖Aq‖2 = (Aq)T (Aq) = qT (AT Aq) = qT (λq) = λ (qT q) = λ‖q‖2

Then (1.) follows for AT A, and the case AAT follows by replacing A by AT .

2. Write N(B) for the set of positive eigenvalues of a matrix B. We must show that N(AT A) =
N(AAT ). If λ ∈ N(AT A) with eigenvector 0 6= q ∈ Rn, then Aq ∈ Rm and

AAT (Aq) = A[(AT A)q] = A(λq) = λ (Aq)

Moreover, Aq 6= 0 since AT Aq = λq 6= 0 and both λ 6= 0 and q 6= 0. Hence λ is an eigenvalue
of AAT , proving N(AT A)⊆ N(AAT ). For the other inclusion replace A by AT .

To analyze an m×n matrix A we have two symmetric matrices to work with: AT A and AAT . In
view of Lemma 8.6.2, we choose AT A (sometimes called the Gram matrix of A), and derive a series
of facts which we will need. This narrative is a bit long, but trust that it will be worth the effort.
We parse it out in several steps:

1. The n×n matrix AT A is real and symmetric so, by the Principal Axes Theorem 8.2.2, let
{q1, q2, . . . , qn} ⊆ Rn be an orthonormal basis of eigenvectors of AT A, with corresponding
eigenvalues λ1, λ2, . . . , λn. By Lemma 8.6.2(1), λi is real for each i and λi ≥ 0. By re-ordering
the qi we may (and do) assume that

λ1 ≥ λ2 ≥ ·· · ≥ λr > 0 and 8 λi = 0 if i > r (i)

By Theorems 8.2.1 and 3.3.4, the matrix

Q =
[

q1 q2 · · · qn
]

is orthogonal and orthogonally diagonalizes AT A (ii)

2. Even though the λi are the eigenvalues of AT A, the number r in (i) turns out to be rank A. To
understand why, consider the vectors Aqi ∈ im A. For all i, j:

Aqi ·Aq j = (Aqi)
T Aq j = qT

i (A
T A)q j = qT

i (λ jq j) = λ j(qT
i q j) = λ j(qi ·q j)

Because {q1, q2, . . . , qn} is an orthonormal set, this gives

Aqi ·Aq j = 0 if i 6= j and ‖Aqi‖2 = λi‖qi‖2 = λi for each i (iii)

We can extract two conclusions from (iii) and (i):

{Aq1, Aq2, . . . , Aqr} ⊆ im A is an orthogonal set and Aqi = 0 if i > r (iv)

With this write U = span{Aq1, Aq2, . . . , Aqr}⊆ im A; we claim that U = im A, that is im A⊆U .
For this we must show that Ax ∈ U for each x ∈ Rn. Since {q1, . . . , qr, . . . , qn} is a basis of

8Of course they could all be positive (r = n) or all zero (so AT A = 0, and hence A = 0 by Exercise 5.3.9).
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Rn (it is orthonormal), we can write xk = t1q1 + · · ·+ trqr + · · ·+ tnqn where each t j ∈ R. Then,
using (iv) we obtain

Ax = t1Aq1 + · · ·+ trAqr + · · ·+ tnAqn = t1Aq1 + · · ·+ trAqr ∈U

This shows that U = im A, and so

{Aq1, Aq2, . . . , Aqr} is an orthogonal basis of im (A) (v)

But col A = im A by Lemma 8.6.1, and rank A = dim (col A) by Theorem 5.4.1, so

rank A = dim (col A) = dim ( im A)
(v)
= r (vi)

3. Before proceeding, some definitions are in order:

Definition 8.7

The real numbers σi =
√

λi
(iii)
= ‖Aq̄i‖ for i = 1, 2, . . . , n, are called the singular values

of the matrix A.

Clearly σ1, σ2, . . . , σr are the positive singular values of A. By (i) we have

σ1 ≥ σ2 ≥ ·· · ≥ σr > 0 and σi = 0 if i > r (vii)

With (vi) this makes the following definitions depend only upon A.

Definition 8.8
Let A be a real, m×n matrix of rank r, with positive singular values
σ1 ≥ σ2 ≥ ·· · ≥ σr > 0 and σi = 0 if i > r. Define:

DA = diag (σ1, . . . , σr) and ΣA =

[
DA 0
0 0

]
m×n

Here ΣA is in block form and is called the singular matrix of A.

The singular values σi and the matrices DA and ΣA will be referred to frequently below.

4. Returning to our narrative, normalize the vectors Aq1, Aq2, . . . , Aqr, by defining

pi =
1

‖Aqi‖
Aqi ∈ Rm for each i = 1, 2, . . . , r (viii)

By (v) and Lemma 8.6.1, we conclude that

{p1, p2, . . . , pr} is an orthonormal basis of col A ⊆ Rm (ix)

Employing the Gram-Schmidt algorithm (or otherwise), construct pr+1, . . . , pm so that

{p1, . . . , pr, . . . , pm} is an orthonormal basis of Rm (x)
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5. By (x) and (ii) we have two orthogonal matrices

P =
[

p1 · · · pr · · · pm
]

of size m×m and Q =
[

q1 · · · qr · · · qn
]

of size n×n

These matrices are related. In fact we have:

σipi =
√

λipi
(iii)
= ‖Aqi‖pi

(viii)
= Aqi for each i = 1, 2, . . . , r (xi)

This yields the following expression for AQ in terms of its columns:

AQ =
[

Aq1 · · · Aqr Aqr+1 · · · Aqn
] (iv)
=

[
σ1p1 · · · σrpr 0 · · · 0

]
(xii)

Then we compute:

PΣA =
[

p1 · · · pr pr+1 · · · pm
]


σ1 · · · 0
... . . . ...
0 · · · σr

0 · · · 0
... ...
0 · · · 0

0 · · · 0
... ...
0 · · · 0

0 · · · 0
... ...
0 · · · 0


=
[

σ1p1 · · · σrpr 0 · · · 0
]

(xii)
= AQ

Finally, as Q−1 = QT it follows that A = PΣAQT .

With this we can state the main theorem of this Section.

Theorem 8.6.1
Let A be a real m×n matrix, and let σ1 ≥ σ2 ≥ ·· · ≥ σr > 0 be the positive singular values
of A. Then r is the rank of A and we have the factorization

A = PΣAQT where P and Q are orthogonal matrices

The factorization A = PΣAQT in Theorem 8.6.1, where P and Q are orthogonal matrices, is
called a Singular Value Decomposition (SVD) of A. This decomposition is not unique. For example
if r < m then the vectors pr+1, . . . , pm can be any extension of {p1, . . . , pr} to an orthonormal
basis of Rm, and each will lead to a different matrix P in the decomposition. For a more dramatic
example, if A = In then ΣA = In, and A = PΣAPT is a SVD of A for any orthogonal n×n matrix P.

Example 8.6.1

Find a singular value decomposition for A =

[
1 0 1

−1 1 0

]
.
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Solution. We have AT A =

 2 −1 1
−1 1 0

1 0 1

, so the characteristic polynomial is

cAT A(x) = det

 x−2 1 −1
1 x−1 0
−1 0 x−1

= (x−3)(x−1)x

Hence the eigenvalues of AT A (in descending order) are λ1 = 3, λ2 = 1 and λ3 = 0 with,
respectively, unit eigenvectors

q1 =
1√
6

 2
−1

1

 , q2 =
1√
2

 0
1
1

 , and q3 =
1√
3

 −1
−1

1


It follows that the orthogonal matrix Q in Theorem 8.6.1 is

Q =
[

q1 q2 q3
]
= 1√

6

 2 0 −
√

2
−1

√
3 −

√
2

1
√

3
√

2


The singular values here are σ1 =

√
3, σ2 = 1 and σ3 = 0, so rank (A) = 2—clear in this

case—and the singular matrix is

ΣA =

[
σ1 0 0
0 σ2 0

]
=

[ √
3 0 0

0 1 0

]
So it remains to find the 2×2 orthogonal matrix P in Theorem 8.6.1. This involves the
vectors

Aq1 =
√

6
2

[
1

−1

]
, Aq2 =

√
2

2

[
1
1

]
, and Aq3 =

[
0
0

]
Normalize Aq1 and Aq2 to get

p1 =
1√
2

[
1

−1

]
and p2 =

1√
2

[
1
1

]
In this case, {p1, p2} is already a basis of R2 (so the Gram-Schmidt algorithm is not
needed), and we have the 2×2 orthogonal matrix

P =
[

p1 p2
]
= 1√

2

[
1 1

−1 1

]
Finally (by Theorem 8.6.1) the singular value decomposition for A is

A = PΣAQT = 1√
2

[
1 1

−1 1

][ √
3 0 0

0 1 0

]
1√
6

 2 −1 1
0

√
3

√
3

−
√

2 −
√

2
√

2


Of course this can be confirmed by direct matrix multiplication.
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Thus, computing an SVD for a real matrix A is a routine matter, and we now describe a
systematic procedure for doing so.

SVD Algorithm

Given a real m×n matrix A, find an SVD A = PΣAQT as follows:

1. Use the Diagonalization Algorithm (see page 188) to find the (real and non-negative)
eigenvalues λ1, λ2, . . . , λn of AT A with corresponding (orthonormal) eigenvectors
q1, q2, . . . , qn. Reorder the qi (if necessary) to ensure that the nonzero eigenvalues
are λ1 ≥ λ2 ≥ ·· · ≥ λr > 0 and λi = 0 if i > r.

2. The integer r is the rank of the matrix A.

3. The n×n orthogonal matrix Q in the SVD is Q =
[

q1 q2 · · · qn
]
.

4. Define pi =
1

‖Aqi‖
Aqi for i = 1, 2, . . . , r (where r is as in step 1). Then

{p1, p2, . . . , pr} is orthonormal in Rm so (using Gram-Schmidt or otherwise) extend
it to an orthonormal basis {p1, . . . , pr, . . . , pm} in Rm.

5. The m×m orthogonal matrix P in the SVD is P =
[

p1 · · · pr · · · pm
]
.

6. The singular values for A are σ1, σ2, . . . , σn where σi =
√

λi for each i. Hence the
nonzero singular values are σ1 ≥ σ2 ≥ ·· · ≥ σr > 0, and so the singular matrix of A in

the SVD is ΣA =

[
diag (σ1, . . . , σr) 0

0 0

]
m×n

.

7. Thus A = PΣQT is a SVD for A.

In practise the singular values σi, the matrices P and Q, and even the rank of an m×n matrix
are not calculated this way. There are sophisticated numerical algorithms for calculating them to a
high degree of accuracy. The reader is referred to books on numerical linear algebra.

So the main virtue of Theorem 8.6.1 is that it provides a way of constructing an SVD for every
real matrix A. In particular it shows that every real matrix A has a singular value decomposition9

in the following, more general, sense:

Definition 8.9
A Singular Value Decomposition (SVD) of an m×n matrix A of rank r is a

factorization A =UΣV T where U and V are orthogonal and Σ =

[
D 0
0 0

]
m×n

in block form

where D = diag (d1, d2, . . . , dr) where each di > 0, and r ≤ m and r ≤ n.

Note that for any SVD A =UΣV T we immediately obtain some information about A:

9In fact every complex matrix has an SVD [J.T. Scheick, Linear Algebra with Applications, McGraw-Hill, 1997]
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Lemma 8.6.3
If A =UΣV T is any SVD for A as in Definition 8.9, then:

1. r = rank A.

2. The numbers d1, d2, . . . , dr are the singular values of AT A in some order.

Proof. Use the notation of Definition 8.9. We have

AT A = (V Σ
TUT )(UΣV T ) =V (ΣT

Σ)V T

so ΣT Σ and AT A are similar n×n matrices (Definition 5.11). Hence r = rank A by Corollary 5.4.3,
proving (1.). Furthermore, ΣT Σ and AT A have the same eigenvalues by Theorem 5.5.1; that is (using
(1.)):

{d2
1 , d2

2 , . . . , d2
r }= {λ1, λ2, . . . , λr} are equal as sets

where λ1, λ2, . . . , λr are the positive eigenvalues of AT A. Hence there is a permutation τ of
{1, 2, · · · , r} such that d2

i = λiτ for each i = 1, 2, . . . , r. Hence di =
√

λiτ = σiτ for each i by
Definition 8.7. This proves (2.).

We note in passing that more is true. Let A be m×n of rank r, and let A =UΣV T be any SVD
for A. Using the proof of Lemma 8.6.3 we have di = σiτ for some permutation τ of {1, 2, . . . , r}.
In fact, it can be shown that there exist orthogonal matrices U1 and V1 obtained from U and V by
τ-permuting columns and rows respectively, such that A =U1ΣAV T

1 is an SVD of A.

8.6.2. Fundamental Subspaces

It turns out that any singular value decomposition contains a great deal of information about an
m×n matrix A and the subspaces associated with A. For example, in addition to Lemma 8.6.3, the
set {p1, p2, . . . , pr} of vectors constructed in the proof of Theorem 8.6.1 is an orthonormal basis
of col A (by (v) and (viii) in the proof). There are more such examples, which is the thrust of this
subsection. In particular, there are four subspaces associated to a real m× n matrix A that have
come to be called fundamental:

Definition 8.10
The fundamental subspaces of an m×n matrix A are:

row A = span{x | x is a row of A}

col A = span{x | x is a column of A}

null A = {x ∈ Rn | Ax = 0}

null AT = {x ∈ Rn | AT x = 0}

If A = UΣV T is any SVD for the real m× n matrix A, any orthonormal bases of U and V provide
orthonormal bases for each of these fundamental subspaces. We are going to prove this, but first
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we need three properties related to the orthogonal complement U⊥ of a subspace U of Rn, where
(Definition 8.1):

U⊥ = {x ∈ Rn | u ·x = 0 for all u ∈U}

The orthogonal complement plays an important role in the Projection Theorem (Theorem 8.1.3),
and we return to it in Section ??. For now we need:

Lemma 8.6.4
If A is any matrix then:

1. ( row A)⊥ = null A and (col A)⊥ = null AT .

2. If U is any subspace of Rn then U⊥⊥ =U .

3. Let {f1, . . . , fm} be an orthonormal basis of Rm. If U = span{f1, . . . , fk}, then

U⊥ = span{fk+1, . . . , fm}

Proof.

1. Assume A is m×n, and let b1, . . . , bm be the rows of A. If x is a column in Rn, then entry i
of Ax is bi ·x, so Ax = 0 if and only if bi ·x = 0 for each i. Thus:

x ∈ null A ⇔ bi ·x = 0 for each i ⇔ x ∈ (span{b1, . . . , bm})⊥ = ( row A)⊥

Hence null A = ( row A)⊥. Now replace A by AT to get null AT = ( row AT )⊥ = (col A)⊥, which
is the other identity in (1).

2. If x ∈ U then y ·x = 0 for all y ∈ U⊥, that is x ∈ U⊥⊥. This proves that U ⊆ U⊥⊥, so it is
enough to show that dim U = dim U⊥⊥. By Theorem 8.1.4 we see that dim V⊥ = n− dim V
for any subspace V ⊆ Rn. Hence

dim U⊥⊥ = n− dim U⊥ = n− (n− dim U) = dim U , as required

3. We have span{fk+1, . . . , fm}⊆U⊥ because {f1, . . . , fm} is orthogonal. For the other inclusion,
let x ∈U⊥ so fi ·x = 0 for i = 1, 2, . . . , k. By the Expansion Theorem 5.3.6:

x = (f1 ·x)f1 + · · · + (fk ·x)fk + (fk+1 ·x)fk+1 + · · · + (fm ·x)fm
= 0 + · · · + 0 + (fk+1 ·x)fk+1 + · · · + (fm ·x)fm

Hence U⊥ ⊆ span{fk+1, . . . , fm}.

With this we can see how any SVD for a matrix A provides orthonormal bases for each of the
four fundamental subspaces of A.
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Theorem 8.6.2
Let A be an m×n real matrix, let A =UΣV T be any SVD for A where U and V are
orthogonal of size m×m and n×n respectively, and let

Σ =

[
D 0
0 0

]
m×n

where D = diag (λ1, λ2, . . . , λr), with each λi > 0

Write U =
[

u1 · · · ur · · · um
]

and V =
[

v1 · · · vr · · · vn
]

, so
{u1, . . . , ur, . . . , um} and {v1, . . . , vr, . . . , vn} are orthonormal bases of Rm and Rn

respectively. Then

1. r = rank A, and the singular values of A are
√

λ1,
√

λ2, . . . ,
√

λr.

2. The fundamental spaces are described as follows:

a. {u1, . . . , ur} is an orthonormal basis of col A.
b. {ur+1, . . . , um} is an orthonormal basis of null AT .
c. {vr+1, . . . , vn} is an orthonormal basis of null A.
d. {v1, . . . , vr} is an orthonormal basis of row A.

Proof.

1. This is Lemma 8.6.3.

2. a. As col A = col (AV ) by Lemma 5.4.3 and AV =UΣ, (a.) follows from

UΣ=
[

u1 · · · ur · · · um
][ diag (λ1, λ2, . . . , λr) 0

0 0

]
=
[

λ1u1 · · · λrur 0 · · · 0
]

b. We have (col A)⊥
(a.)
= (span{u1, . . . , ur})⊥ = span{ur+1, . . . , um} by Lemma 8.6.4(3).

This proves (b.) because (col A)⊥ = null AT by Lemma 8.6.4(1).
c. We have dim (null A)+ dim ( im A) = n by the Dimension Theorem 7.2.4, applied to

T : Rn → Rm where T (x) = Ax. Since also im A = col A by Lemma 8.6.1, we obtain
dim (null A) = n− dim (col A) = n− r = dim (span{vr+1, . . . , vn})

So to prove (c.) it is enough to show that v j ∈ null A whenever j > r. To this end write

λr+1 = · · ·= λn = 0, so ET E = diag (λ 2
1 , . . . , λ

2
r , λ

2
r+1, . . . , λ

2
n )

Observe that each λ j is an eigenvalue of ΣT Σ with eigenvector e j = column j of In. Thus
v j =Ve j for each j. As AT A =V ΣT ΣV T (proof of Lemma 8.6.3), we obtain

(AT A)v j = (V Σ
T

ΣV T )(Ve j) =V (ΣT
Σe j) =V

(
λ

2
j e j

)
= λ

2
j Ve j = λ

2
j v j

for 1 ≤ j ≤ n. Thus each v j is an eigenvector of AT A corresponding to λ 2
j . But then

‖Av j‖2 = (Av j)
T Av j = vT

j (A
T Av j) = vT

j (λ
2
j v j) = λ

2
j ‖v j‖2 = λ

2
j for i = 1, . . . , n

In particular, Av j = 0 whenever j > r, so v j ∈ null A if j > r, as desired. This proves (c).
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d. Observe that span{vr+1, . . . , vn}
(c.)
= null A = ( row A)⊥ by Lemma 8.6.4(1). But then

parts (2) and (3) of Lemma 8.6.4 show

row A =
(
( row A)⊥

)⊥
= (span{vr+1, . . . , vn})⊥ = span{v1, . . . , vr}

This proves (d.), and hence Theorem 8.6.2.

Example 8.6.2

Consider the homogeneous linear system

Ax = 0 of m equations in n variables

Then the set of all solutions is null A. Hence if A =UΣV T is any SVD for A then (in the
notation of Theorem 8.6.2) {vr+1, . . . , vn} is an orthonormal basis of the set of solutions for
the system. As such they are a set of basic solutions for the system, the most basic notion
in Chapter 1.

8.6.3. The Polar Decomposition of a Real Square Matrix

If A is real and n×n the factorization in the title is related to the polar decomposition A. Unlike
the SVD, in this case the decomposition is uniquely determined by A.

Recall (Section 8.3) that a symmetric matrix A is called positive definite if and only if xT Ax > 0
for every column x 6= 0 ∈ Rn. Before proceeding, we must explore the following weaker notion:

Definition 8.11
A real n×n matrix G is called positive10if it is symmetric and

xT Gx ≥ 0 for all x ∈ Rn

Clearly every positive definite matrix is positive, but the converse fails. Indeed, A =

[
1 1
1 1

]
is

positive because, if x=
[

a b
]T in R2, then xT Ax= (a+b)2 ≥ 0. But yT Ay= 0 if y=

[
1 −1

]T ,
so A is not positive definite.

Lemma 8.6.5
Let G denote an n×n positive matrix.

1. If A is any m×n matrix and G is positive, then AT GA is positive (and m×m).

10Also called positive semi-definite.
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2. If G = diag (d1, d2, · · · , dn) and each di ≥ 0 then G is positive.

Proof.

1. xT (AT GA)x = (Ax)T G(Ax)≥ 0 because G is positive.

2. If x =
[

x1 x2 · · · xn
]T , then

xT Gx = d1x2
1 +d2x2

2 + · · ·+dnx2
n ≥ 0

because di ≥ 0 for each i.

Definition 8.12
If A is a real n×n matrix, a factorization

A = GQ where G is positive and Q is orthogonal

is called a polar decomposition for A.

Any SVD for a real square matrix A yields a polar form for A.

Theorem 8.6.3
Every square real matrix has a polar form.

Proof. Let A =UΣV T be a SVD for A with Σ as in Definition 8.9 and m = n. Since UTU = In here
we have

A =UΣV T = (UΣ)(UTU)V T = (UΣUT )(UV T )

So if we write G = UΣUT and Q = UV T , then Q is orthogonal, and it remains to show that G is
positive. But this follows from Lemma 8.6.5.

The SVD for a square matrix A is not unique (In = PInPT for any orthogonal matrix P). But
given the proof of Theorem 8.6.3 it is surprising that the polar decomposition is unique.11 We omit
the proof.

The name “polar form” is reminiscent of the same form for complex numbers (see Appendix
??). This is no coincidence. To see why, we represent the complex numbers as real 2×2 matrices.
Write M2(R) for the set of all real 2×2 matrices, and define

σ : C→ M2(R) by σ(a+bi) =
[

a −b
b a

]
for all a+bi in C

11See J.T. Scheick, Linear Algebra with Applications, McGraw-Hill, 1997, page 379.
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One verifies that σ preserves addition and multiplication in the sense that

σ(zw) = σ(z)σ(w) and σ(z+w) = σ(z)+σ(w)

for all complex numbers z and w. Since θ is one-to-one we may identify each complex number a+bi
with the matrix θ(a+bi), that is we write

a+bi =
[

a −b
b a

]
for all a+bi in C

Thus 0 =

[
0 0
0 0

]
, 1 =

[
1 0
0 1

]
= I2, i =

[
0 −1
1 0

]
, and r =

[
r 0
0 r

]
if r is real.

If z = a+ bi is nonzero then the absolute value r = |z| =
√

a2 +b2 6= 0. If θ is the angle of z in
standard position, then cosθ = a/r and sinθ = b/r. Observe:[

a −b
b a

]
=

[
r 0
0 r

][
a/r −b/r
b/r a/r

]
=

[
r 0
0 r

][
cosθ −sinθ

sinθ cosθ

]
= GQ (xiii)

where G =

[
r 0
0 r

]
is positive and Q =

[
cosθ −sinθ

sinθ cosθ

]
is orthogonal. But in C we have G = r

and Q = cosθ + isinθ so (xiii) reads z = r(cosθ + isinθ) = reiθ which is the classical polar form for

the complex number a+ bi. This is why (xiii) is called the polar form of the matrix
[

a −b
b a

]
;

Definition 8.12 simply adopts the terminology for n×n matrices.

8.6.4. The Pseudoinverse of a Matrix

It is impossible for a non-square matrix A to have an inverse (see the footnote to Definition 2.11).
Nonetheless, one candidate for an “inverse” of A is an m×n matrix B such that

ABA = A and BAB = B

Such a matrix B is called a middle inverse for A. If A is invertible then A−1 is the unique middle
inverse for A, but a middle inverse is not unique in general, even for square matrices. For example,

if A =

 1 0
0 0
0 0

 then B =

[
1 0 0
b 0 0

]
is a middle inverse for A for any b.

If ABA = A and BAB = B it is easy to see that AB and BA are both idempotent matrices. In 1955
Roger Penrose observed that the middle inverse is unique if both AB and BA are symmetric. We
omit the proof.

Theorem 8.6.4: Penrose’ Theorem12

Given any real m×n matrix A, there is exactly one n×m matrix B such that A and B satisfy
the following conditions:
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P1 ABA = A and BAB = B.

P2 Both AB and BA are symmetric.

Definition 8.13
Let A be a real m×n matrix. The pseudoinverse of A is the unique n×m matrix A+ such
that A and A+ satisfy P1 and P2, that is:

AA+A = A, A+AA+ = A+, and both AA+ and A+A are symmetric13

If A is invertible then A+ = A−1 as expected. In general, the symmetry in conditions P1 and P2
shows that A is the pseudoinverse of A+, that is A++ = A.

12R. Penrose, A generalized inverse for matrices, Proceedings of the Cambridge Philosophical Society 5l (1955),
406-413. In fact Penrose proved this for any complex matrix, where AB and BA are both required to be hermitian
(see Definition ?? in the following section).

13Penrose called the matrix A+ the generalized inverse of A, but the term pseudoinverse is now commonly used.
The matrix A+ is also called the Moore-Penrose inverse after E.H. Moore who had the idea in 1935 as part of a
larger work on “General Analysis”. Penrose independently re-discovered it 20 years later.
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Theorem 8.6.5
Let A be an m×n matrix.

1. If rank A = m then AAT is invertible and A+ = AT (AAT )−1.

2. If rank A = n then AT A is invertible and A+ = (AT A)−1AT .

Proof. Here AAT (respectively AT A) is invertible by Theorem 5.4.4 (respectively Theorem 5.4.3).
The rest is a routine verification.

In general, given an m×n matrix A, the pseudoinverse A+ can be computed from any SVD for
A. To see how, we need some notation. Let A =UΣV T be an SVD for A (as in Definition 8.9) where

U and V are orthogonal and Σ =

[
D 0
0 0

]
m×n

in block form where D = diag (d1, d2, . . . , dr) where

each di > 0. Hence D is invertible, so we make:

Definition 8.14

Σ′ =

[
D−1 0

0 0

]
n×m

.

A routine calculation gives:

Lemma 8.6.6

• ΣΣ′Σ = Σ

• Σ′ΣΣ′ = Σ′

• ΣΣ′ =

[
Ir 0
0 0

]
m×m

• Σ′Σ =

[
Ir 0
0 0

]
n×n

That is, Σ′ is the pseudoinverse of Σ.
Now given A =UΣV T , define B =V Σ′UT . Then

ABA = (UΣV T )(V Σ
′UT )(UΣV T ) =U(ΣΣ

′
Σ)V T =UΣV T = A

by Lemma 8.6.6. Similarly BAB = B. Moreover AB = U(ΣΣ′)UT and BA = V (Σ′Σ)V T are both
symmetric again by Lemma 8.6.6. This proves

Theorem 8.6.6
Let A be real and m×n, and let A =UΣV T is any SVD for A as in Definition 8.9. Then
A+ =V Σ′UT .
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Of course we can always use the SVD constructed in Theorem 8.6.1 to find the pseudoinverse.

If A =

 1 0
0 0
0 0

, we observed above that B =

[
1 0 0
b 0 0

]
is a middle inverse for A for any b.

Furthermore AB is symmetric but BA is not, so B 6= A+.

Example 8.6.3

Find A+ if A =

 1 0
0 0
0 0

.

Solution. AT A =

[
1 0
0 0

]
with eigenvalues λ1 = 1 and λ2 = 0 and corresponding

eigenvectors q1 =

[
1
0

]
and q2 =

[
0
1

]
. Hence Q =

[
q1 q2

]
= I2. Also A has rank 1 with

singular values σ1 = 1 and σ2 = 0, so ΣA =

 1 0
0 0
0 0

= A and Σ′
A =

[
1 0 0
0 0 0

]
= AT in this

case.

Since Aq1 =

 1
0
0

 and Aq2 =

 0
0
0

, we have p1 =

 1
0
0

 which extends to an orthonormal

basis {p1, p2, p3} of R3 where (say) p2 =

 0
1
0

 and p3 =

 0
0
1

. Hence

P =
[

p1 p2 p3
]
= I, so the SVD for A is A = PΣAQT . Finally, the pseudoinverse of A is

A+ = QΣ′
APT = Σ′

A =

[
1 0 0
0 0 0

]
. Note that A+ = AT in this case.

The following Lemma collects some properties of the pseudoinverse that mimic those of the
inverse. The verifications are left as exercises.

Lemma 8.6.7
Let A be an m×n matrix of rank r.

1. A++ = A.

2. If A is invertible then A+ = A−1.

3. (AT )+ = (A+)T .

4. (kA)+ = kA+ for any real k.

5. (UAV )+ =UT (A+)V T whenever U and V are orthogonal.



8.6. The Singular Value Decomposition 451

Exercises for 8.6

Exercise 8.6.1 If ACA = A show that B = CAC is
a middle inverse for A.

Exercise 8.6.2 For any matrix A show that

ΣAT = (ΣA)
T

Exercise 8.6.3 If A is m×n with all singular values
positive, what is rank A?

Exercise 8.6.4 If A has singular values σ1, . . . , σr,
what are the singular values of:

ATa) tA where t > 0 is realb)
A−1 assuming A is invertible.c)

b. tσ1, . . . , tσr.

Exercise 8.6.5 If A is square show that det A is
the product of the singular values of A.

Exercise 8.6.6 If A is square and real, show that
A = 0 if and only if every eigenvalue of A is 0.

Exercise 8.6.7 Given a SVD for an invertible ma-
trix A, find one for A−1. How are ΣA and ΣA−1 related?
If A =UΣV T then Σ is invertible, so A−1 =V Σ−1UT

is a SVD.

Exercise 8.6.8 Let A−1 = A = AT where A is n×n.
Given any orthogonal n×n matrix U , find an orthog-
onal matrix V such that A = UΣAV T is an SVD for

A. If A =

[
0 1
1 0

]
do this for:

U = 1
5

[
3 −4
4 3

]
a) U = 1√

2

[
1 −1
1 1

]
b)

b. First AT A = In so ΣA = In.

A = 1√
2

[
1 1
1 −1

][
1 0
0 1

]
1√
2

[
1 1

−1 1

]
= 1√

2

[
1 −1
1 1

]
1√
2

[
−1 1

1 1

]
=

[
−1 0

0 1

]

Exercise 8.6.9 Find a SVD for the following ma-
trices:

A =

 1 −1
0 1
1 0

a)

 1 1 1
−1 0 −2

1 2 0

b)

b.
A = F

= 1
5

[
3 4
4 −3

][
20 0 0 0
0 10 0 0

]
1
2

 1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 1 −1



Exercise 8.6.10 Find an SVD for A=

[
0 1

−1 0

]
.

Exercise 8.6.11 If A =UΣV T is an SVD for A, find
an SVD for AT .

Exercise 8.6.12 Let A be a real, m×n matrix with
positive singular values σ1, σ2, . . . , σr, and write

s(x) = (x−σ1)(x−σ2) · · ·(x−σr)

a. Show that cAT A(x) = s(x)xn−r and
cAT A(c) = s(x)xm−r.

b. If m ≤ n conclude that cAT A(x) = s(x)xn−m.

Exercise 8.6.13 If G is positive show that:

a. rG is positive if r ≥ 0

b. G+H is positive for any positive H.

b. If x ∈ Rn then xT (G+H)x = xT Gx+xT Hx ≥
0+0 = 0.

Exercise 8.6.14 If G is positive and λ is an eigen-
value, show that λ ≥ 0.

Exercise 8.6.15 If G is positive show that G = H2

for some positive matrix H. [Hint: Preceding exer-
cise and Lemma 8.6.5]

Exercise 8.6.16 If A is n× n show that AAT and
AT A are similar. [Hint: Start with an SVD for A.]

Exercise 8.6.17 Find A+ if:
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a. A =

[
1 2

−1 −2

]

b. A =

 1 −1
0 0
1 −1


b.

[ 1
4 0 1

4
−1

4 0 −1
4

]

Exercise 8.6.18 Show that (A+)T = (AT )+.
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